簡易檢索 / 詳目顯示

研究生: 林枝盈
Zhi-Ying Lin
論文名稱: 以化學流體沈積法沈積銅膜於矽基材上
Deposition of Copper Films on Silicon Wafer by Chemical Fluid Deposition
指導教授: 談駿嵩
Chung-Sung Tan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: 化學流體沈積法含浸法
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體元件尺寸縮小和深□比拉大,銅金屬導線技術的要求度也隨之變高。PVD或CVD的鍍膜技術會面臨到披覆性不均一、無法深入高深□比基材及沈積溫度過高等問題。本研究則利用化學流體沈積法沈積銅於矽基材上(Chemical Fluid Deposition of Copper : CFDCu),嘗試解決上述的問題。
    在大多數的銅膜製程中,銅會選擇性沈積在金屬層上,而非介電層上。所以為了降低銅沈積在矽基材上的溫度,和增加銅和矽基材的附著性,會先沈積催化金屬層如Pd或Pt在矽基材上,再進行銅膜製程。本研究亦先以不同的改質方法在矽基材上放入催化金屬,再進行CFDCu。改質方法包括以CFD沈積Pd,及以含浸法放入Pd、Cu及Pt。藉由銅沈積溫度及溝槽中的沈積形態,來比較改質方法中CFD和含浸法的差異,也可比較改質金屬Pd、Cu及Pt的差異。
    CFDCu實驗結果顯示,在沈積溫度210 oC和160 oC時,各種改質方法都能比未改質時,大幅提高銅還原程度,而且都可填滿溝槽。但當還原溫度降至140 oC時則未完全還原。由各項分析結果如還原程度、織構係數、晶粒大小、沈積形態、縱深雜質分布及電阻率,都顯示沈積溫度在210 oC優於160 oC。但不論那種改質方法都未能顯示出差異性,可能原因是在各方法中,改質金屬的粒子發生聚集、分布不均勻、或未深入溝槽等現象,使得催化作用未出現,所以未能大幅降低沈積溫度。
    改質實驗中所觀察到含浸法中不同操作,對CFDCu之溝槽沈積形態的影響如:真空乾燥較緩慢乾燥有利,無□燒處理較經過□燒處理有利,浸置液濃度對CFDCu的影響不大,及經過Wiping(表面擦拭)處理較沒有經過Wiping有利。


    摘要 I 目錄 II 表目錄 III 圖目錄 IV 第一章 緒論 1-1 研究背景 1 1-2 化學流體沈積法原理介紹 1 1-3 物理氣相沈積法簡介 3 1-4 化學氣相沈積法簡介 3 1-5 在PVD或CVD中改善階段披覆率的方法 5 第二章 文獻回顧 2-1 有機金屬前驅物 8 2-1-1金屬前驅物形式 8 2-1-2金屬前驅物在超臨界二氧化碳中的溶解度 9 2-1-3反應機構 10 2-1- 4 Cu(hfac)2和Cu(hfac)2•H2O的比較 12 2-2種晶層(或催化金屬層)在CVD和化學電鍍法的應用 13 2-3 含浸法的應用 14 2-4 以CFD沈積銅膜(CFDCu) 15 2-4-1溫度與金屬催化層對沈積效果的影響 15 2-4-2雜質比率與加入氫氣的重要性 18 2-4-3披覆性 19 2-4-4阻抗(電阻率) 19 2-4-5以醇類輔助銅薄膜沈積 20 2-5 以CFD沈積鈀(Pd)和鉑(Pt)薄膜 21 2-6 CFD的各種不同操作程序 22 第三章 實驗部份 3-1藥品 37 3-2 實驗設備與儀器 37 3-3研究方法 38 3-4實驗步驟 39 3-4-1以含浸法改質基材 39 3-4-2 以CFDPd改質基材 40 3-4-3 以CFD沈積銅 41 第四章 實驗結果與討論 4-1 XRD分析 46 4-1-1 各種改質方法在不同銅沈積溫度下對還原程度的影響 46 4-1-2 TC值和平均晶粒大小 48 4-2 SEM分析 49 4-2-1 對未改質矽基材進行CFDCu 49 4-2-2 CFDCu 沈積溫度210 oC時,各種改質方法對溝槽沈積的影響 50 4-2-3 CFDCu 沈積溫度160 oC時,各種改質方法對溝槽沈積的影響 52 4-2-4 CFDCu 沈積溫度140 oC時,各種改質方法對溝槽沈積的影響 54 4-3 EDS分析 55 4-4 銅沈積層的縱深成份分佈分析 55 4-5 電阻率 57 第五章 結論 83 第六章 參考文獻 85

    Andersen, W. C., Sievers, R. E., Lagalante, An. F., Bruno T. J., “Solubilities of Cerium(IV), Terbium(III), and Iron(III) □-Diketonates in Supercritical Carbon Dioxide”, J. Chem. Eng. Data 2001, 46, 1045-1049.

    Awaya, N., Arita, Y., “Accelerated Deposition Rate and High Quality Film Copper Chemical Vapor Deposition Using a Water Vapor Addition to a Hydrogen and Cu(hfac)2 Reaction System”, Jpn. J. Appl. Phys. 1993, 32, 3915-3919.

    Becker, R., Devi, A., Weib□□J., Weckenmann, U., Winter, M., Kiener, C., Becker, H. W., Fischer, R. A., “A Study on the Metal-Organic CVD of Pure Copper Films from Low Cost Copper(II) Dialkylamino-2-porpoxides Tuning the Thermal Properties of the Precursor by Small Variations of the Ligand”, Chemical Vapor Deposition 2003, 9, 149-156.

    Blackburn, J. M., Long, D. P., Cabanas, A., Watkins, J. J.,“Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide’’, Science 2001, 294, 141-145.

    Blackburn, J. M., Long, D. P., Watkins, J. J.,“Reactive Deposition of Conformal Palladium Films from Supercritical Carbon Dioxide Solution’’, Chem. Mater. 2000, 12, 2625-2631.

    Bhaskaran, V., Hampden-Smith, J. M., Kodas, T. T., “Palladium Thin Films Growth by CVD from (1, 1, 1, 5, 5, 5,-Hexafluoro-2,4-pentanedionato) Palladium(II)”, Chemical Vapor Deposition. 1997, 3, 85-90.

    Cabanas, A., Blackbrun, J. M., Watkins, J. J., “Deposition of Cu Films from Supercritical Fluids Using Cu(I) □-Diketonate Precursors”, Microelectronic Engineering 2002, 64, 53-61.

    Cabanas, A., Shan, X., Watkins, J. J., “Aocohol-Assisted Deposition of Copper Films from Supercritical Carbon Dioxide”, Chem. Mater. 2003, 15, 2910-2916.
    Choi, H., Hwang, S., “Copper(I) tert-Butyl 3-Oxobutanoate Complexes as Precursors for Chemical Vapor Deposition of Copper”, Chem. Mater. 1998, 10, 2326-2328.

    Cominos, V., Gavriilidis, A.,“Sublimation and deposition behavior of Palladium(II) Acetylacetonate’’, Eur. Phys. J. AP. 2001, 15, 23-33.

    Doppelt, P., Semaltanos, N., Cavellin, C. D., Pastol, J. L., Ballutaud, D., “High Affinity Self-Assembled Minelayers for Copper CVD”, Microelectronic Engineering 2004, 76, 113-118.

    Ee, Y. C., Chen, Z., Chan, L., See, A. K. H., Law, S. B., Tee, K. C., Zeng, K. Y., Shen, L., “Effect of Processing Parameters on Electro-less Cu Seed Layer Properties”, Thin Solid Films 2004, 462-463, 197-201.

    Fernandes, N. E., Fisher, S. M., Poshusta, J. C., Vlachos, D. G., Tsapatsis, M., Watkins, J. J.,“Reactive Deposition of Metal Thin Films within Porous Supports from Supercritical Fluids’’, Chem. Mater. 2001, 13, 2023-2031.

    Garriga, R., Pessey, V., Weill, F., Chevalier, B., Etourneau, J., Cansell, F., “Kinetic Study of Chemical Transformation in Supercritical Media of Bis(hexafluoroacetylacetonate) Copper (II) Hydrate”, Journal of Supercritical Fluids 2001, 20, 53–63.

    Grift, V. D., Mulder, A., Geus, J. W., “Characterization of Silica-Supported Copper Catalysts by Means of Temperature Programmed Reduction ”, Applied Catalysis 1990, 60, 181-192.

    Hampden-Smith, M., Kodas, Y.,“The Chemistry of Metal-CVD’’, Chapter 4 ~ Chapter 5, New York, 1994, 175-296.

    Hunde, E. T., Watkins, J. J.,“Reactive Deposition of Cobalt and Nickel Films from Their Metallocenes in Supercritical Carbon Dioxide Solution’’, Chem. Mater. 2004, 16, 498-503.

    Inada, Y., Horita, T., Yokooka, Y., Funahashi, S., “Kinetic Effect of Cosolvents on the Metalation Reaction of Porphyrin with Bis (□-Diketonato) Copper(II) in Supercritical Carbon Dioxide”, Journal of Supercritical Fluids 2004, 31, 175–183.

    Jain, A., Chi, K. M., Kodas, T. T., Hampden-Smith, M. J.,“Chemical Vapor Deposition of Copper from Hexafluoroacetylacetonato Copper(I) Vinyltrimethylsilane’’, J. Electrochem. Soc. 1993, 140, 1434-1439.

    Kim, J-Y., Reucroft, P. J., Park, D-K.,“Nucleation and Growth Mechanisms of Copper MOCVD Film on Au/Si Substrates’’, Thin Solid Films 1996, 289, 184-191.

    Kim, S., Choi. D. J., Yoon, K. R., Kim, K. H., Koh, S. K., “Characteristics of Chemical-Vapor-Deposited Copper on the Cu-Seeded TiN Substrates”, Thin Solid Films 1997, 311, 218-224.

    Kim, S. Y., Shimogaki, Y. “X-Ray Photoelectron Spectroscopic Characterization of the Adhesion Behavior of Chemical Deposited Copper Films”. J. Vac. Sci. Technol. A 2001, 19, 2642-2651.

    Kondoh , E.,“Deposition of Cu and Ru Thin Films in Deep Nanotrenches/Holes Using Supercritical Carbon Dioxide’’, Japanese Journal of Applied Physics 2004, 43, 3328-3933.

    Kondoh , E., Kato, H., “Characteristics of Copper Deposition in a Supercritical CO2 Fluid”, Microelectronic Engineering 2002, 64, 495–499.

    Lagalante, A. F., Hansen, B. N., Bruno, T. J., “Solubilities of Copper(II) and Chromium(III) □-Diketonates in Supercritical Carbon Dioxide’’, Inorg. Chem. 1995, 34, 5781.

    Lekhal, A., Glasser, B. J., Khinast, J. G., “Impact of drying on the catalyst profile in supported impregnation catalysts”, Chemical Engineering Science 2001, 56, 4473-4487.

    Lee, W. H., Ko, Y. K., Byun, I. J., Seo, B. S., Lee, J. G., “Chemical Vapor Deposition of an Electroplating Cu Seed Layer Using Hexafluoro-acetylacetonate Cu(1,5-dimethylcyclooctadiene)”, J. Vac. Sci. Technol. A 2001, 19, 2974-2978.

    M’Hamdi, R., Bocquet, J. F., Chhor, K., Pommier, C., “Solubility and Decomposition Studies on Metal Chelates in Supercritical Fluids for Ceramic Precursor Powder Synthesis”, J. Supercrit. Fluids 1991, 4, 55-59.

    Mukhopadhyay, S., Shalini, K., Devi, A., Shivashankar, S. A., “Thermodynamic investigation of the MOCVD of Copper Films from Bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II)’’, Bull. Mater. Sci. 2002, 25, 391-398.

    Ohde, H., Kramer, S., Moore, S., Wai, C. M.,“Low-Temperature Deposition of Conformal Copper Films in Supercritical CO2 by Catalytic Hydrogen Reduction of Copper Hexafluoroacetylacetonate’’, Chem. Mater. 2004, 16, 4028-4031.

    Pauleau, Y., Fasasi, A. Y., “Kinetic of Sublimation of Copper(II) Acetylacetonate Complex Used for Chemical Vapor Deposition of Copper Films”, Chem. Mater. 1991, 3, 45-50.
    Roggeman, E. J., Scurto, A. M., Brennecke, J. F., “Spectroscopy, Solubility, and Modeling of Cosolvent Effects on Metal Chelate Complexes in Supercritical Carbon Dioxide Solutions ”, Ind. Eng. Chem. Res. 2001, 40(3), 980-989.

    Shim, K. C., Lee, H. B., Kwon, O. K., Park, H. S., Koh, W., Kang, S. W., “Bottom-up Filling of Submicrometer Features in Catalyst-Enhanced Chemical Vapor Deposition of Copper’’, J. Electrochem. Soc. 2002, 149, 109-113.

    Wai, C. M., Ohde, H., Kramer, S.,“Methods of Forming Metal-Containing Films Over Surfaces of Semiconductor Substrates ; and Semiconductor Constructions’’, US 6653236 B2 2003, Nov. 25.

    Watkins, J. J., Blackburn, J. M., Long, D. P., Lazorcik, J. L., “Chemical Fluid Deposition Method for the Formation of Metal and Meal Alloy Films on Patterned and Unpatterned Substrates’’, US 6689700 B1 2004, Feb. 10.

    Watkins, J. J., Blackburn, J. M., McCarthy, T. J.,“Chemical Fluid Deposition:Reactive Deposition of Platinum Metal from Carbon Dioxide Solution’’, Chem. Mater. 1999, 11, 213-215.

    Ye, X. R. , Lin, Y., Wang, C., Wai, C. M.,“Supercritical Fluid Fabrication of Metal Nanowires and Nanorods Templated by Multiwalled Carbon Nanotubes’’ , Advanced Material, 2003, 5, 316-319.

    Yoda, S., Hasegawa, A., Suda, H., Uchimaru, Y., Haraya, Kenji., Tsuji, T., Otake, Katsut., “Preparation of a Platinum and Palladium/Polyimide Nanocomposite Film as a Precrusor of Metal Doped Carbon Molecular Sieve Membrane via Supercritical Impregnation”, Chem. Mater. 2004, 16, 2362-2368.

    Zhang, M., Sekiguchi, A., Okada, O., Itsuki, A., Ogi, K.,“Chemical Vapor Deposition of Copper Thin Films Using a Novel Precursor of Allyloxy- trimethylsilyl Hexafluoroacetonate Copper(I)’’, Jpn. J. Appl. Phys. 2001, 40, 4825-4828.

    Zong, Y., Watkins, J. J.,“Deposition of Copper by the H2-Assisted Reduction of Cu(tmod)2 in Supercritical Carbon Dioxide Kinetics and Reaction Mechanism’’, Chem. Mater. 2005, 17, 560-565.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE