研究生: |
陳庭歡 Chen, Ting-Huan |
---|---|
論文名稱: |
YAP在肌肉細胞內調控其增生和分化 YAP as a molecular regulator of proliferation and differentiation in C2C12 myoblast |
指導教授: |
褚志斌
Chuu, Chih-Pin 汪宏達 Wang, Horng-Dar |
口試委員: |
張中和
Chang, Chung-Ho 夏興國 Shiah, Shine-Gwo 陳雅雯 Chen, Ya-Wen |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 肌肉前驅細胞 、分化 、增生 |
外文關鍵詞: | YAP, C2C12, myogenesis |
相關次數: | 點閱:79 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Hippo訊息傳導途徑中的效應物YAP是癌症和正常發育中細胞增殖和分化的有力調節劑。已有研究證明YAP會促進衛星細胞和衛星細胞衍生的成肌細胞的增殖。然而目前對於YAP對肌肉細胞增生以及分化的調控還不清楚。我們使用過度表達或缺乏YAP的C2C12肌細胞來探討這個問題。我們的研究結果指出,YAP的過度表達增加了C2C12肌肉前驅細胞的增殖,而缺乏YAP會通過誘導發生G0 / G1細胞週期的阻滯來降低C2C12肌肉前驅細胞的生長。 YAP的過度表達增加了Ser 675上的beta-catenin的磷酸化程度,-catenin進核的量和TCF-4的轉錄活性,而減少YAP的表現則會降低它們。有趣的是 PKG-1抑製劑KT5823降低了Ser675上beta-catenin的磷酸化程度,TCf-4轉錄活性和減少C2C12肌肉前驅細胞增殖。 PKG-1是由cGMP活化而細胞內的cGMP可從 soluble guanylate and membrane-bound guanylate cyclase所產生。利用qPCR分析顯示,過度表達或降低YAP的表現並沒有改變GC-A(ANP的受體)的表現量。有趣的是,YAP增加了GC-B(CNP的受體)的表現量,以及在CNP的刺激下增加cGMP產生的量。另外,YAP的降低降低了GC-B,PKG-1,beta-catenin和TCF-4的蛋白表現量以及降低CNP刺激的cGMP產生的量。這些結果指出YAP通過GC-B-cGMP-PKG-1-beta-catenin/TCF-4的傳導路徑來調控C2C12肌肉前驅細胞的細胞增殖。
MEK5 / ERK5 MAPK途徑對於早期肌肉細胞分化過程至關重要。我們發現在C2C12-YAP細胞中ERK5和MEK5被活化。 C2C12-YAP的細胞也比對照組細胞分化較多的肌管 (myotube),並且表達較多調節肌肉細胞分化的轉錄因子。西方墨點分析顯示,C2C12-YAP細胞中Src和c-Abl被活化,c-Abl或Src抑制劑抑制了MEK5和ERK5的活化和C2C12肌肉前驅細胞的分化。通過共免疫沉澱實驗說明了YAP和ERK5途徑中的蛋白質之間的特異性相互作用,例如MEK激酶3(MEKK3)和ERK5。 MEKK3含有可與YAP相互作用的PPGY序列(aa 178-181)。定點突變實驗證明MEKK3 Y181F突變體的表達抑制MEK5 / ERK5的活化和C2C12肌肉前驅細胞的分化。這些結果表明YAP通過激活Abl / Src / MEKK3 / MEK5 / ERK5訊息傳導的途徑來促進C2C12肌肉前驅細胞的分化。
The Hippo pathway effector YAP is a potent regulator of cell proliferation and differentiation in cancer and normal development. It has been shown that YAP promotes the proliferation of satellite cells and satellite cell-derived myoblasts. However, the signaling pathway which links YAP to myoblast growth and the role of YAP in myogenic differentiation remains to be established. We investigated this issue using C2C12 myoblasts over-expressing or lacking YAP. Our results showed that over-expression of YAP increased proliferation of C2C12 myoblasts, whereas knock-down of YAP reduced growth of C2C12 myoblasts by inducing the G0/G1 arrest. Over-expression of YAP increased phosphorylation levels of beta-catenin on Ser 675, nuclear translocation of beta-catenin and TCF-4 transcription activity, whereas knock-down of YAP decreased them. Interestingly, KT5823, the PKG-1 inhibitor, decreased the phosphorylation of beta-catenin on Ser 675, the TCF-4 transcriptional activity and the growth of C2C12 myoblasts, suggesting that YAP promotes C2C12 myoblast proliferation by phosphorylating beta-catenin on Ser 675 via PKG-1. PKG-1 is activated by cGMP which is generated by both soluble guanylate and membrane-bound guanylate cyclase. Real-time PCR analyses revealed that over-expression or knocking down of YAP did not alter levels of soluble guanylate cyclase and membrane-bound guanylate cyclase GC-A (the receptor for atrial natriuretic peptide). Interestingly, over-expression of YAP up-regulated membrane-bound guanylate cyclase GC-B, the receptor for C-type natriuretic peptide (CNP), and increased CNP-stimulated cGMP formation. In contrast, knock-down of YAP reduced levels of GC-B, PKG-1, beta-catenin and TCF-4 levels and CNP-stimulated cGMP formation. These data indicate that YAP regulates myoblast proliferation via the GC-B-cGMP-PKG-1-beta-catenin/TCF-4 signaling pathway.
The MEK5/ERK5 MAPK cascade is essential for the early step of myogenesis. We found that ERK5 and MEK5 were activated in C2C12-YAP cells compared with control C2C12 (C2C12-vector) cells. C2C12-YAP stable cells also differentiated into myotubes better than C2C12-vector cells, and expressed elevated levels of myogenin, a transcription factor that regulates myogenesis, as well as elevated levels of myosin heavy chain, a skeletal muscle marker. Western blot analysis revealed that Src and c-Abl (Abelson murine leukemia viral oncogene homolog 1) activation were enhanced in C2C12-YAP cells. Conversely, treatment of inhibitors of c-Abl, Src, or MEK5 inhibited activation of MEK5 and ERK5 and myogenesis of C2C12 myoblasts. Specific interactions between YAP and proteins in the ERK5 pathway, such as MEK kinase 3 (MEKK3) and ERK5, were illustrated by coimmunoprecipitation experiments. MEKK3 contains the PPGY motif (aa 178–181), which may interact with YAP. Site-directed mutagenesis experiments revealed that expression of MEKK3 Y181F mutant inhibited MEK5/ERK5 activation and myogenic differentiation. These results suggest that YAP promotes muscle differentiation by activating the Abl/Src/MEKK3/MEK5/ERK5 kinase cascade.
1. M. Buckingham, L. Bajard, T. Chang, P. Daubas, J. Hadchouel, S. Meilhac, D. Montarras, D. Rocancourt, F. Relaix, The formation of skeletal muscle: from somite to limb. J Anat 202, 59-68 (2003); published online EpubJan (
2. C. F. Bentzinger, Y. X. Wang, M. A. Rudnicki, Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4, (2012); published online EpubFeb 01 (10.1101/cshperspect.a008342).
3. J. E. Morgan, T. A. Partridge, Muscle satellite cells. Int J Biochem Cell Biol 35, 1151-1156 (2003); published online EpubAug (
4. H. H. Arnold, T. Braun, Targeted inactivation of myogenic factor genes reveals their role during mouse myogenesis: A review. Int J Dev Biol 40, 345-353 (1996); published online EpubFeb (
5. M. Buckingham, L. Bajard, T. Chang, P. Daubas, J. Hadchouel, S. Meilhac, D. Montarras, D. Rocancourt, F. Relaix, The formation of skeletal muscle: from somite to limb. J Anat 202, 59-68 (2003); published online EpubJan (DOI 10.1046/j.1469-7580.2003.00139.x).
6. A. B. Lassar, S. X. Skapek, B. Novitch, Regulatory Mechanisms That Coordinate Skeletal-Muscle Differentiation and Cell-Cycle Withdrawal. Curr Opin Cell Biol 6, 788-794 (1994); published online EpubDec (Doi 10.1016/0955-0674(94)90046-9).
7. E. N. Olson, M. Perry, R. A. Schulz, Regulation of Muscle Differentiation by the Mef2 Family of Mads Box Transcription Factors. Dev Biol 172, 2-14 (1995); published online EpubNov (DOI 10.1006/dbio.1995.0002).
8. M. Buckingham, S. Tajbakhsh, Expression of Myogenic Factors in the Mouse - Myf-5, the 1st Member of the Myod Gene Family to Be Transcribed during Skeletal Myogenesis. Cr Acad Sci Iii-Vie 316, 1040-1046 (1993); published online EpubSep (
9. S. P. Yee, P. W. J. Rigby, The Regulation of Myogenin Gene-Expression during the Embryonic-Development of the Mouse. Gene Dev 7, 1277-1289 (1993); published online EpubJul (DOI 10.1101/gad.7.7a.1277).
10. J. D. Molkentin, E. N. Olson, Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. P Natl Acad Sci USA 93, 9366-9373 (1996); published online EpubSep 3 (DOI 10.1073/pnas.93.18.9366).
11. M. Sudol, Yes-Associated Protein (Yap65) Is a Proline-Rich Phosphoprotein That Binds to the Sh3 Domain of the Yes Protooncogene Product. Oncogene 9, 2145-2152 (1994); published online EpubAug (
12. R. Yagi, M. J. Kohn, I. Karavanova, K. J. Kaneko, D. Vullhorst, M. L. DePamphilis, A. Buonanno, Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827-3836 (2007); published online EpubNov 1 (Doi 10.1242/Dev.010223).
13. Y. W. Hao, A. Chun, K. Cheung, B. Rashidi, X. L. Yang, Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509 (2008); published online EpubFeb 29 (
14. M. Overholtzer, J. Zhang, G. A. Smolen, B. Muir, W. Li, D. C. Sgroi, C. X. Deng, J. S. Brugge, D. A. Haber, Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proceedings of the National Academy of Sciences of the United States of America 103, 12405-12410 (2006); published online EpubAug 15 (10.1073/pnas.0605579103).
15. B. Zhao, J. Kim, X. Ye, Z. C. Lai, K. L. Guan, Both TEAD-binding and WW domains are required for the growth stimulation and oncogenic transformation activity of yes-associated protein. Cancer Res 69, 1089-1098 (2009); published online EpubFeb 01 (10.1158/0008-5472.CAN-08-2997).
16. J. Dong, G. Feldmann, J. Huang, S. Wu, N. Zhang, S. A. Comerford, M. F. Gayyed, R. A. Anders, A. Maitra, D. Pan, Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133 (2007); published online EpubSep 21 (10.1016/j.cell.2007.07.019).
17. H. Linn, K. S. Ermekova, S. Rentschler, A. B. Sparks, B. K. Kay, M. Sudol, Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP. Biol Chem 378, 531-537 (1997); published online EpubJun (DOI 10.1515/bchm.1997.378.6.531).
18. M. Sudol, P. Bork, A. Einbond, K. Kastury, T. Druck, M. Negrini, K. Huebner, D. Lehman, Characterization of the Mammalian Yap (Yes-Associated Protein) Gene and Its Role in Defining a Novel Protein Module, the Ww Domain. J Biol Chem 270, 14733-14741 (1995); published online EpubJun 16 (
19. J. X. Dong, G. Feldmann, J. B. Huang, S. Wu, N. L. Zhang, S. A. Comerford, M. F. Gayyed, R. A. Anders, A. Maitra, D. J. Pan, Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120-1133 (2007); published online EpubSep 21 (DOI 10.1016/j.cell.2007.07.019).
20. B. Zhao, X. Wei, W. Li, R. S. Udan, Q. Yang, J. Kim, J. Xie, T. Ikenoue, J. Yu, L. Li, P. Zheng, K. Ye, A. Chinnaiyan, G. Halder, Z. C. Lai, K. L. Guan, Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Gene Dev 21, 2747-2761 (2007); published online EpubNov 1 (Doi 10.1101/Gad.1602907).
21. T. Oka, V. Mazack, M. Sudol, Mst2 and lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). J Biol Chem 283, 27534-27546 (2008); published online EpubOct 10 (DOI 10.1074/jbc.M804380200).
22. K. F. Harvey, X. Zhang, D. M. Thomas, The Hippo pathway and human cancer. Nature reviews. Cancer 13, 246-257 (2013); published online EpubApr (10.1038/nrc3458).
23. X. Zhi, D. Zhao, Z. Zhou, R. Liu, C. Chen, YAP promotes breast cell proliferation and survival partially through stabilizing the KLF5 transcription factor. The American journal of pathology 180, 2452-2461 (2012); published online EpubJun (10.1016/j.ajpath.2012.02.025).
24. B. A. Edgar, From cell structure to transcription: Hippo forges a new path. Cell 124, 267-273 (2006); published online EpubJan 27 (10.1016/j.cell.2006.01.005).
25. Z. Zhou, J. S. Zhu, Z. P. Xu, Q. Zhang, Lentiviral vector-mediated siRNA knockdown of the YAP gene inhibits growth and induces apoptosis in the SGC7901 gastric cancer cell line. Molecular medicine reports 4, 1075-1082 (2011); published online EpubNov-Dec (10.3892/mmr.2011.543).
26. S. Wu, Y. Liu, Y. Zheng, J. Dong, D. Pan, The TEAD/TEF family protein Scalloped mediates transcriptional output of the Hippo growth-regulatory pathway. Developmental cell 14, 388-398 (2008); published online EpubMar (10.1016/j.devcel.2008.01.007).
27. A. A. Steinhardt, M. F. Gayyed, A. P. Klein, J. Dong, A. Maitra, D. Pan, E. A. Montgomery, R. A. Anders, Expression of Yes-associated protein in common solid tumors. Human pathology 39, 1582-1589 (2008); published online EpubNov (10.1016/j.humpath.2008.04.012).
28. X. Wang, L. Su, Q. Ou, Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. European journal of cancer (Oxford, England : 1990) 48, 1227-1234 (2012); published online EpubMay (10.1016/j.ejca.2011.10.001).
29. F. D. Camargo, S. Gokhale, J. B. Johnnidis, D. Fu, G. W. Bell, R. Jaenisch, T. R. Brummelkamp, YAP1 increases organ size and expands undifferentiated progenitor cells. Current biology : CB 17, 2054-2060 (2007); published online EpubDec 04 (10.1016/j.cub.2007.10.039).
30. S. S. Cheon, A. Y. Cheah, S. Turley, P. Nadesan, R. Poon, H. Clevers, B. A. Alman, beta-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proceedings of the National Academy of Sciences of the United States of America 99, 6973-6978 (2002); published online EpubMay 14 (10.1073/pnas.102657399).
31. M. Bienz, H. Clevers, Linking colorectal cancer to Wnt signaling. Cell 103, 311-320 (2000); published online EpubOct 13 (
32. N. Barker, H. Clevers, Catenins, Wnt signaling and cancer. BioEssays : news and reviews in molecular, cellular and developmental biology 22, 961-965 (2000); published online EpubNov (10.1002/1521-1878(200011)22:11<961::aid-bies1>3.0.co;2-t).
33. E. F. Chan, U. Gat, J. M. McNiff, E. Fuchs, A common human skin tumour is caused by activating mutations in beta-catenin. Nature genetics 21, 410-413 (1999); published online EpubApr (10.1038/7747).
34. S. Hino, C. Tanji, K. I. Nakayama, A. Kikuchi, Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Molecular and cellular biology 25, 9063-9072 (2005); published online EpubOct (10.1128/MCB.25.20.9063-9072.2005).
35. B. Lustig, B. Jerchow, M. Sachs, S. Weiler, T. Pietsch, U. Karsten, M. van de Wetering, H. Clevers, P. M. Schlag, W. Birchmeier, J. Behrens, Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22, 1184-1193 (2002); published online EpubFeb (
36. M. J. Seidensticker, J. Behrens, Biochemical interactions in the wnt pathway. Biochimica et biophysica acta 1495, 168-182 (2000); published online EpubFeb 02 (
37. A. A. Wooldridge, C. N. Fortner, B. Lontay, T. Akimoto, R. L. Neppl, C. Facemire, M. B. Datto, A. Kwon, E. McCook, P. Li, S. Wang, R. J. Thresher, S. E. Miller, J. C. Perriard, T. P. Gavin, R. C. Hickner, T. M. Coffman, A. V. Somlyo, Z. Yan, T. A. Haystead, Deletion of the protein kinase A/protein kinase G target SMTNL1 promotes an exercise-adapted phenotype in vascular smooth muscle. J Biol Chem 283, 11850-11859 (2008); published online EpubApr 25 (10.1074/jbc.M708628200).
38. D. M. DiPasquale, M. Cheng, W. Billich, S. A. Huang, N. van Rooijen, T. A. Hornberger, T. J. Koh, Urokinase-type plasminogen activator and macrophages are required for skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol 293, C1278-1285 (2007); published online EpubOct (10.1152/ajpcell.00201.2007).
39. A. A. Wooldridge, J. A. MacDonald, F. Erdodi, C. Ma, M. A. Borman, D. J. Hartshorne, T. A. Haystead, Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem 279, 34496-34504 (2004); published online EpubAug 13 (10.1074/jbc.M405957200).
40. E. L. Leung, J. C. Wong, M. G. Johlfs, B. K. Tsang, R. R. Fiscus, Protein kinase G type Ialpha activity in human ovarian cancer cells significantly contributes to enhanced Src activation and DNA synthesis/cell proliferation. Mol Cancer Res 8, 578-591 (2010); published online EpubApr (10.1158/1541-7786.mcr-09-0178).
41. R. R. Fiscus, M. G. Johlfs, Protein kinase G type-I phosphorylates c-Src at serine-17 and promotes cell survival, proliferation and attachment in human mesothelioma and non-small cell lung cancer cells. (BMC Pharmacol. 2011;11(Suppl 1):O31. doi:10.1186/1471-2210-11-S1-O31.).
42. J. C. Wong, R. R. Fiscus, Essential roles of the nitric oxide (no)/cGMP/protein kinase G type-Ialpha (PKG-Ialpha) signaling pathway and the atrial natriuretic peptide (ANP)/cGMP/PKG-Ialpha autocrine loop in promoting proliferation and cell survival of OP9 bone marrow stromal cells. J Cell Biochem 112, 829-839 (2011); published online EpubMar (10.1002/jcb.22981).
43. R. Feil, B. Kemp-Harper, cGMP signalling: from bench to bedside. Conference on cGMP generators, effectors and therapeutic implications. EMBO reports 7, 149-153 (2006); published online EpubFeb (10.1038/sj.embor.7400627).
44. L. R. Potter, S. Abbey-Hosch, D. M. Dickey, Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine reviews 27, 47-72 (2006); published online EpubFeb (10.1210/er.2005-0014).
45. V. Mericq, J. A. Uyeda, K. M. Barnes, F. De Luca, J. Baron, Regulation of fetal rat bone growth by C-type natriuretic peptide and cGMP. Pediatric research 47, 189-193 (2000); published online EpubFeb (
46. H. Hagiwara, A. Inoue, A. Yamaguchi, S. Yokose, M. Furuya, S. Tanaka, S. Hirose, cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells. The American journal of physiology 270, C1311-1318 (1996); published online EpubMay (
47. C. Xia, M. Nguyen, A. K. Garrison, Z. Zhao, Z. Wang, C. Sutherland, L. Ma, CNP/cGMP signaling regulates axon branching and growth by modulating microtubule polymerization. Developmental neurobiology 73, 673-687 (2013); published online EpubSep (10.1002/dneu.22078).
48. A. Cuenda, P. Cohen, Stress-activated protein kinase-2 p38 and a rapamycin-sensitive pathway are required for C2C12 myogenesis. J Biol Chem 274, 4341-4346 (1999); published online EpubFeb 12 (DOI 10.1074/jbc.274.7.4341).
49. C. S. Mermelstein, D. M. Portilho, F. A. Mendes, M. L. Costa, J. G. Abreu, Wnt/beta-catenin pathway activation and myogenic differentiation are induced by cholesterol depletion. Differentiation 75, 184-192 (2007); published online EpubMar (DOI 10.1111/j.1432-0436.2006.00129.x).
50. A. Mauro, C. Ciccarelli, P. De Cesaris, A. Scoglio, M. Bouche, M. Molinaro, A. Aquino, B. M. Zani, PKC alpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. J Cell Sci 115, 3587-3599 (2002); published online EpubSep 15 (Doi 10.1242/Jcs.00037).
51. D. Dinev, B. W. A. Jordan, B. Neufeld, J. D. Lee, D. Lindemann, U. R. Rapp, S. Ludwig, Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. Embo Rep 2, 829-834 (2001); published online EpubSep (DOI 10.1093/embo-reports/kve177).
52. E. J. Carter, R. A. Cosgrove, I. Gonzalez, J. H. Eisemann, F. A. Lovett, L. J. Cobb, J. M. Pell, MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. Journal of cell science 122, 3104-3112 (2009); published online EpubSep 1 (Doi 10.1242/Jcs.045757).
53. K. I. Watt, R. Judson, P. Medlow, K. Reid, T. B. Kurth, J. G. Burniston, A. Ratkevicius, C. De Bari, H. Wackerhage, Yap is a novel regulator of C2C12 myogenesis. Biochem Biophys Res Commun 393, 619-624 (2010); published online EpubMar 19 (10.1016/j.bbrc.2010.02.034).
54. H. Q. Zhang, M. Deo, R. C. Thompson, M. D. Uhler, D. L. Turner, Negative regulation of Yap during neuronal differentiation. Dev Biol 361, 103-115 (2012); published online EpubJan 1 (DOI 10.1016/j.ydbio.2011.10.017).
55. H. Y. Zhang, H. A. Pasolli, E. Fuchs, Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proceedings of the National Academy of Sciences of the United States of America 108, 2270-2275 (2011); published online EpubFeb 8 (DOI 10.1073/pnas.1019603108).
56. Y. T. Lin, J. Y. Ding, M. Y. Li, T. S. Yeh, T. W. Wang, J. Y. Yu, YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res 318, 1877-1888 (2012); published online EpubSep 10 (DOI 10.1016/j.yexcr.2012.05.005).
57. S. J. Yang, C. Y. Chen, G. D. Chang, H. C. Wen, C. Y. Chen, S. C. Chang, J. F. Liao, C. H. Chang, Activation of Akt by advanced glycation end products (AGEs): involvement of IGF-1 receptor and caveolin-1. PloS one 8, e58100 (2013)10.1371/journal.pone.0058100).
58. H. Posthaus, L. Williamson, D. Baumann, R. Kemler, R. Caldelari, M. M. Suter, H. Schwarz, E. Muller, beta-Catenin is not required for proliferation and differentiation of epidermal mouse keratinocytes. J Cell Sci 115, 4587-4595 (2002); published online EpubDec 1 (
59. M. Menconi, P. Gonnella, V. Petkova, S. Lecker, P. O. Hasselgren, Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J Cell Biochem 105, 353-364 (2008); published online EpubOct 1 (10.1002/jcb.21833).
60. V. M. Golubovskaya, R. Finch, W. G. Cance, Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. The Journal of biological chemistry 280, 25008-25021 (2005); published online EpubJul 1 (10.1074/jbc.M414172200).
61. H. C. Wen, C. P. Chuu, C. Y. Chen, S. G. Shiah, H. J. Kung, K. L. King, L. C. Su, S. C. Chang, C. H. Chang, Elevation of soluble guanylate cyclase suppresses proliferation and survival of human breast cancer cells. PloS one 10, e0125518 (2015)10.1371/journal.pone.0125518).
62. C. Y. Lin, C. Huo, L. K. Kuo, R. A. Hiipakka, R. B. Jones, H. P. Lin, Y. Hung, L. C. Su, J. C. Tseng, Y. Y. Kuo, Y. L. Wang, Y. Fukui, Y. H. Kao, J. M. Kokontis, C. C. Yeh, L. Chen, S. D. Yang, H. H. Fu, Y. W. Chen, K. K. Tsai, J. Y. Chang, C. P. Chuu, Cholestane-3beta, 5alpha, 6beta-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PloS one 8, e65734 (2013)10.1371/journal.pone.0065734).
63. C. Han, Q. Zhao, B. Lu, The role of nitric oxide signaling in food intake; insights from the inner mitochondrial membrane peptidase 2 mutant mice. Redox biology 1, 498-507 (2013)10.1016/j.redox.2013.10.003).
64. D. Y. Liang, J. D. Clark, Modulation of the NO/CO-cGMP signaling cascade during chronic morphine exposure in mice. Neuroscience letters 365, 73-77 (2004); published online EpubJul 15 (10.1016/j.neulet.2004.04.054).
65. H. Jing, J. H. Yen, D. Ganea, A novel signaling pathway mediates the inhibition of CCL3/4 expression by prostaglandin E2. J Biol Chem 279, 55176-55186 (2004); published online EpubDec 31 (10.1074/jbc.M409816200).
66. T. Tsuji, C. Kiyosu, K. Akiyama, T. Kunieda, CNP/NPR2 signaling maintains oocyte meiotic arrest in early antral follicles and is suppressed by EGFR-mediated signaling in preovulatory follicles. Molecular reproduction and development 79, 795-802 (2012); published online EpubNov (10.1002/mrd.22114).
67. K. J. Livak, T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25, 402-408 (2001); published online EpubDec (10.1006/meth.2001.1262).
68. K. Sunadome, T. Yamamoto, M. Ebisuya, K. Kondoh, A. Sehara-Fujisawa, E. Nishida, ERK5 Regulates Muscle Cell Fusion through Klf Transcription Factors. Developmental cell 20, 192-205 (2011); published online EpubFeb 15 (DOI 10.1016/j.devcel.2010.12.005).
69. D. Dinev, B. W. Jordan, B. Neufeld, J. D. Lee, D. Lindemann, U. R. Rapp, S. Ludwig, Extracellular signal regulated kinase 5 (ERK5) is required for the differentiation of muscle cells. EMBO reports 2, 829-834 (2001); published online EpubSep (10.1093/embo-reports/kve177).
70. E. J. Carter, R. A. Cosgrove, I. Gonzalez, J. H. Eisemann, F. A. Lovett, L. J. Cobb, J. M. Pell, MEK5 and ERK5 are mediators of the pro-myogenic actions of IGF-2. Journal of cell science 122, 3104-3112 (2009); published online EpubSep 01 (10.1242/jcs.045757).
71. Y. Suzaki, M. Yoshizumi, S. Kagami, A. H. Koyama, Y. Taketani, H. Houchi, K. Tsuchiya, E. Takeda, T. Tamaki, Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells: potential role in cell survival following oxidative insults. The Journal of biological chemistry 277, 9614-9621 (2002); published online EpubMar 15 (10.1074/jbc.M111790200).
72. M. G. di Bari, L. Ciuffini, M. Mingardi, R. Testi, S. Soddu, D. Barila, c-Abl acetylation by histone acetyltransferases regulates its nuclear-cytoplasmic localization. Embo Rep 7, 727-733 (2006); published online EpubJul (DOI 10.1038/sj.embor.7400700).
73. H. Jeong, S. Bae, S. Y. An, M. R. Byun, J. H. Hwang, M. B. Yaffe, J. H. Hong, E. S. Hwang, TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. Faseb J 24, 3310-3320 (2010); published online EpubSep (Doi 10.1096/Fj.09-151324).
74. A. von Gise, Z. Lin, K. Schlegelmilch, L. B. Honor, G. M. Pan, J. N. Buck, Q. Ma, T. Ishiwata, B. Zhou, F. D. Camargo, W. T. Pu, YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proceedings of the National Academy of Sciences of the United States of America 109, 2394-2399 (2012); published online EpubFeb 14 (10.1073/pnas.1116136109).
75. E. M. Morin-Kensicki, B. N. Boone, M. Howell, J. R. Stonebraker, J. Teed, J. G. Alb, T. R. Magnuson, W. O'Neal, S. L. Milgram, Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol 26, 77-87 (2006); published online EpubJan (10.1128/MCB.26.1.77-87.2006).
76. R. Makita, Y. Uchijima, K. Nishiyama, T. Amano, Q. Chen, T. Takeuchi, A. Mitani, T. Nagase, Y. Yatomi, H. Aburatani, O. Nakagawa, E. V. Small, P. Cobo-Stark, P. Igarashi, M. Murakami, J. Tominaga, T. Sato, T. Asano, Y. Kurihara, H. Kurihara, Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol 294, F542-553 (2008); published online EpubMar (10.1152/ajprenal.00201.2007).
77. J. H. Hong, E. S. Hwang, M. T. McManus, A. Amsterdam, Y. Tian, R. Kalmukova, E. Mueller, T. Benjamin, B. M. Spiegelman, P. A. Sharp, N. Hopkins, M. B. Yaffe, TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074-1078 (2005); published online EpubAug 12 (10.1126/science.1110955).
78. E. J. Vlug, R. A. H. van de Ven, J. F. Vermeulen, P. Bult, P. J. van Diest, P. W. B. Derksen, Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer. Cell Oncol 36, 375-384 (2013); published online EpubOct (DOI 10.1007/s13402-013-0143-7).
79. C. A. Hall, R. S. Wang, J. Y. Miao, E. Oliva, X. Y. Shen, T. Wheeler, S. G. Hilsenbeck, S. Orsulic, S. Goode, Hippo Pathway Effector Yap Is an Ovarian Cancer Oncogene. Cancer research 70, 8517-8525 (2010); published online EpubNov 1 (Doi 10.1158/0008-5472.Can-10-1242).
80. A. M. Liu, M. Z. Xu, J. F. Chen, R. T. Poon, J. M. Luk, Targeting YAP and Hippo signaling pathway in liver cancer. Expert Opin Ther Tar 14, 855-868 (2010); published online EpubAug (Doi 10.1517/14728222.2010.499361).
81. I. Lian, J. Kim, H. Okazawa, J. G. Zhao, B. Zhao, J. D. Yu, A. Chinnaiyan, M. A. Israel, L. S. B. Goldstein, R. Abujarour, S. Ding, K. L. Guan, The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Gene Dev 24, 1106-1118 (2010); published online EpubJun 1 (Doi 10.1101/Gad.1903310).
82. K. Nakamura, G. L. Johnson, PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway. Journal of Biological Chemistry 278, 36989-36992 (2003); published online EpubSep 26 (DOI 10.1074/jbc.C300313200).
83. L. Scapoli, M. E. Ramos-Nino, M. Martinelli, B. T. Mossman, Src-dependent ERK5 and Src/EGFR-dependent ERK1/2 activation is required for cell proliferation by asbestos. Oncogene 23, 805-813 (2004); published online EpubJan 22 (10.1038/sj.onc.1207163).
84. H. Lu, P. Shah, D. Ennis, G. Shinder, J. Sap, H. Le-Tien, I. G. Fantus, The differentiation of skeletal muscle cells involves a protein-tyrosine phosphatase-alpha-mediated C-Src signaling pathway. J Biol Chem 277, 46687-46695 (2002); published online EpubNov 29 (10.1074/jbc.M209643200).
85. Z. Hossain, S. M. Ali, H. L. Ko, J. Xu, C. P. Ng, K. Guo, Z. Qi, S. Ponniah, W. Hong, W. Hunziker, Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proceedings of the National Academy of Sciences of the United States of America 104, 1631-1636 (2007); published online EpubJan 30 (10.1073/pnas.0605266104).
86. Z. Zhou, Y. Hao, N. Liu, L. Raptis, M. S. Tsao, X. Yang, TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 30, 2181-2186 (2011); published online EpubMay 5 (10.1038/onc.2010.606).
87. Y. Hao, A. Chun, K. Cheung, B. Rashidi, X. Yang, Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509 (2008); published online EpubFeb 29 (10.1074/jbc.M709037200).
88. R. N. Judson, A. M. Tremblay, P. Knopp, R. B. White, R. Urcia, C. De Bari, P. S. Zammit, F. D. Camargo, H. Wackerhage, The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci 125, 6009-6019 (2012); published online EpubDec 15 (10.1242/jcs.109546).
89. K. D. Hanson, M. Shichiri, M. R. Follansbee, J. M. Sedivy, Effects of c-myc expression on cell cycle progression. Mol Cell Biol 14, 5748-5755 (1994); published online EpubSep (
90. K. E. Knudsen, J. A. Diehl, C. A. Haiman, E. S. Knudsen, Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 25, 1620-1628 (2006); published online EpubMar 13 (10.1038/sj.onc.1209371).
91. V. Baldin, J. Lukas, M. J. Marcote, M. Pagano, G. Draetta, Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7, 812-821 (1993); published online EpubMay (
92. W. M. Konsavage, Jr., G. S. Yochum, Intersection of Hippo/YAP and Wnt/beta-catenin signaling pathways. Acta biochimica et biophysica Sinica 45, 71-79 (2013); published online EpubFeb (10.1093/abbs/gms084).
93. M. Xin, Y. Kim, L. B. Sutherland, X. Qi, J. McAnally, R. J. Schwartz, J. A. Richardson, R. Bassel-Duby, E. N. Olson, Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Science signaling 4, ra70 (2011); published online EpubOct 25 (10.1126/scisignal.2002278).
94. S. Taurin, N. Sandbo, Y. Qin, D. Browning, N. O. Dulin, Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. The Journal of biological chemistry 281, 9971-9976 (2006); published online EpubApr 14 (10.1074/jbc.M508778200).
95. M. Molenaar, M. van de Wetering, M. Oosterwegel, J. Peterson-Maduro, S. Godsave, V. Korinek, J. Roose, O. Destree, H. Clevers, XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell 86, 391-399 (1996); published online EpubAug 09 (
96. Y. Ren, J. Zheng, X. Yao, G. Weng, L. Wu, Essential role of the cGMP/PKG signaling pathway in regulating the proliferation and survival of human renal carcinoma cells. Int J Mol Med 34, 1430-1438 (2014); published online EpubNov (10.3892/ijmm.2014.1925).
97. J. Hood, H. J. Granger, Protein kinase G mediates vascular endothelial growth factor-induced Raf-1 activation and proliferation in human endothelial cells. J Biol Chem 273, 23504-23508 (1998); published online EpubSep 04 (
98. J. W. Denninger, M. A. Marletta, Guanylate cyclase and the .NO/cGMP signaling pathway. Biochimica et biophysica acta 1411, 334-350 (1999); published online EpubMay 05 (
99. A. C. Makris, Y. Sotzios, Z. Zhou, M. Makropoulou, N. Papapetropoulos, P. Zacharatos, A. Pyriochou, C. Roussos, A. Papapetropoulos, T. Vassilakopoulos, Nitric oxide stimulates interleukin-6 production in skeletal myotubes. J Interferon Cytokine Res 30, 321-327 (2010); published online EpubMay (10.1089/jir.2009.0022).
100. A. W. Lange, A. Sridharan, Y. Xu, B. R. Stripp, A. K. Perl, J. A. Whitsett, Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. Journal of molecular cell biology 7, 35-47 (2015); published online EpubFeb (10.1093/jmcb/mju046).
101. Z. Huang, J. Hu, J. Pan, Y. Wang, G. Hu, J. Zhou, L. Mei, W. C. Xiong, YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation. Development 143, 2398-2409 (2016); published online EpubJul 01 (10.1242/dev.130658).
102. K. Strassburger, M. Tiebe, F. Pinna, K. Breuhahn, A. A. Teleman, Insulin/IGF signaling drives cell proliferation in part via Yorkie/YAP. Developmental biology 367, 187-196 (2012); published online EpubJul 15 (10.1016/j.ydbio.2012.05.008).
103. T.-H. Chen, C.-Y. Chen, H.-C. Wen, C.-C. Chang, H.-D. Wang, C.-P. Chuu, C.-H. Chang, YAP promotes myogenic differentiation via the MEK5-ERK5 pathway. The FASEB Journal, (2017); published online EpubMarch 29, 2017 (10.1096/fj.201601090R).
104. Z. Zhou, J. S. Zhu, C. P. Gao, L. P. Li, C. Zhou, H. Wang, X. G. Liu, siRNA targeting YAP gene inhibits gastric carcinoma growth and tumor metastasis in SCID mice. Oncology letters 11, 2806-2814 (2016); published online EpubApr (10.3892/ol.2016.4319).
105. T. N. Masckauchan, C. J. Shawber, Y. Funahashi, C. M. Li, J. Kitajewski, Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 8, 43-51 (2005)10.1007/s10456-005-5612-9).
106. X. Peng, L. Yang, H. Chang, G. Dai, F. Wang, X. Duan, L. Guo, Y. Zhang, G. Chen, Wnt/beta-catenin signaling regulates the proliferation and differentiation of mesenchymal progenitor cells through the p53 pathway. PloS one 9, e97283 (2014)10.1371/journal.pone.0097283).
107. E. R. Delgado, R. Bahal, D. Ly, S. P. S. Monga, The role of wnt/β-catenin signaling in regulating angiogenesis in hepatocellular carcinoma. The FASEB Journal 27, 471.471 (2013); published online EpubApril 1, 2013 (
108. C. Shen, D. Wang, X. Liu, B. Gu, Y. Du, F. Z. Wei, L. L. Cao, B. Song, X. Lu, Q. Yang, Q. Zhu, T. Hou, M. Li, L. Wang, H. Wang, Y. Zhao, Y. Yang, W. G. Zhu, SET7/9 regulates cancer cell proliferation by influencing beta-catenin stability. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29, 4313-4323 (2015); published online EpubOct (10.1096/fj.15-273540).
109. M. Imajo, K. Miyatake, A. Iimura, A. Miyamoto, E. Nishida, A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. The EMBO journal 31, 1109-1122 (2012); published online EpubMar 07 (10.1038/emboj.2011.487).
110. , (!!! INVALID CITATION !!!).
111. D. Fang, D. Hawke, Y. Zheng, Y. Xia, J. Meisenhelder, H. Nika, G. B. Mills, R. Kobayashi, T. Hunter, Z. Lu, Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. The Journal of biological chemistry 282, 11221-11229 (2007); published online EpubApr 13 (10.1074/jbc.M611871200).
112. K. S. Murthy, H. Zhou, Selective phosphorylation of the IP3R-I in vivo by cGMP-dependent protein kinase in smooth muscle. American journal of physiology. Gastrointestinal and liver physiology 284, G221-230 (2003); published online EpubFeb (10.1152/ajpgi.00401.2002).
113. C. Xia, Z. Bao, C. Yue, B. M. Sanborn, M. Liu, Phosphorylation and regulation of G-protein-activated phospholipase C-beta 3 by cGMP-dependent protein kinases. The Journal of biological chemistry 276, 19770-19777 (2001); published online EpubJun 08 (10.1074/jbc.M006266200).
114. J. D. Amack, M. S. Mahadevan, Myogenic defects in myotonic dystrophy. Developmental biology 265, 294-301 (2004); published online EpubJan 15 (
115. J. M. Lamar, P. Stern, H. Liu, J. W. Schindler, Z. G. Jiang, R. O. Hynes, The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proceedings of the National Academy of Sciences of the United States of America 109, E2441-2450 (2012); published online EpubSep 11 (10.1073/pnas.1212021109).
116. S. Piccolo, S. Dupont, M. Cordenonsi, The biology of YAP/TAZ: hippo signaling and beyond. Physiological reviews 94, 1287-1312 (2014); published online EpubOct (10.1152/physrev.00005.2014).