研究生: |
邱翊睿 Ciou, Yi-Ruei |
---|---|
論文名稱: |
索引調變之多重接取 Index-Modulation Multiple Access |
指導教授: |
吳仁銘
Wu, Jen-Ming |
口試委員: |
蔡育仁
Tsai, Yuh-Ren 伍紹勳 Wu, Sau-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 多重接取 、索引調變 、空間調變 、廣義空間調變 、大規模機器類通信 |
外文關鍵詞: | Multiple Access, Index Modulation, Spatial Modulation, Generalized Spatial Modulation, mMTC |
相關次數: | 點閱:62 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在下世代行動通訊系統中(第五代行動通訊系統5G)需要支援更高的傳輸量,更有效的傳送資料,更多的使用者可以使用和低延遲的傳輸。在5G中的其中一個使用情境是mMTC,mMTC特別強調支援更多使用者和降低控制訊號的使用量。目前的第四代行動通訊系統(4G)已經無法滿足上述的需求,因此許多論文開始探討如何達到5G的需求使用者,例如NOMA,SCMA這類型的非正交多重接取的方法,非正交多重接取克服了傳統的正交接取的缺點,在傳統的正交接取中一個子載波只會有一個使用者,非正交接取讓更多的使用者可以同時使用子載波。在grant free的傳送方式可以有效的降低控制訊號的使用並且降低傳送的延遲時間,因此非正交grant free多重接取變成mMTC的熱門研究題目。另外索引調變在近幾年來也是相當熱門的調變方法,因為索引調變可以經由配置系統的參數,讓傳送時的資料量上升可以有效的提高能源效率和頻譜效能的使用。
在本篇論文中,我們結合了索引調變與非正交多重接取方法的特色,提出了「索引調變之多重接取」技術。此技術使用子載波當成索引參數,並且在使用到的子載波上傳送資料,根據不同的使用環境,我們可以更有彈性的調整索引,可以提供不同的支援。藉由是先定義好的碰撞區塊和grant free的傳送資料方法,此技術可以符合mMTC的需求,降低控制訊號的使用和傳送延遲的時間。透過模擬結果與分析,發現此技術達到高能量效率與高頻譜效率,這意味著這項技術在5G未來的發展中具有相當大的潛力。
Massive Machine Type Communications (mMTC), which emphasizes in massive connections and low control signaling overhead, the 4G wireless system can not fit those requirement. Thus, the 4G wireless system is not suitable for mMTC. The grant free transmission code-domain non-orthogonal multiple access (NOMA) is the new scheme to support the mMTC. Since code-domain NOMA can afford more user to access the resource. The grant free transmission can reduce the signaling overhead and transmission latency. So, the grant free transmission code-domain NOMA can fit the requirement of 5G mMTC. However, in the grant free transmission, the receiver must to do the blind detection.
In this thesis, we combine the features of IM technique and NOMA technique to propose the “Index Modulation multiple access (IMMA)” scheme. IMMA technology uses the active subcarriers and inactive subcarriers to be the index indices.
In grant free IMMA scheme, which will predefine a contention region let user to access this region. By the predefined contention region, the network does not need to send the control signaling (SG). Without the SR/SG, the time latency of grant free IMMA can lower than OFDMA. Such that grant free IMMA can support the requirement for mMTC. According to different demands, IMMA can flexibly choose the active subcarriers. Our results show that IMMA has better energy efficiency than OFDMA and SCMA. The IMMA has better BER performance than SCMA in the same diversity order.
[1] K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai, J. Ma, and P. Zhu,
“Uplink Contention Based SCMA for 5G Radio Access,” IEEE Globecom Workshops
(GC Wkshps), pp. 900–905, 2014.
[2] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-
Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access,” IEEE Vehicular
Technology Conference (VTC Spring), pp. 1–5, 2013.
[3] H. Nikopour and H. Baligh, “Sparse Code Multiple Access,” IEEE 24th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC),
pp. 332–336, 2013.
[4] J. Zhang, L. Lu, Y. Sun, Y. Chen, J. Liang, J. Liu, H. Yang, S. Xing, Y. Wu, J. Ma,
I. B. F. Murias, and F. J. L. Hernando, “PoC of SCMA-Based Uplink Grant-Free
Transmission in UCNC for 5G,” IEEE Journal on Selected Areas in Communications,
pp. 1353–1362, 2017.
[5] L. Dai, B. Wang, Y. Yuan, S. Han, C. lin I, and Z. Wang, “Non-Orthogonal Multiple
Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends,”
IEEE Communications Magazine, pp. 74–81, 2015.
[6] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C.
Zhang, “What Will 5G Be?” IEEE Journal on Selected Areas in Communications, pp.
1065–1082, 2014.
[7] S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi, “Superposition
Coding Strategies: Design and Experimental Evaluation,” IEEE Trans. on Wireless
Communications, vol. 11, no. 7, pp. 2628–2639, July 2012.
[8] M.Taherzadeh, H.Nikopour, A.Bayesteh, and H.Baligh, “SCMA Codebook Design,”
IEEE 80th Vehicular Technology Conference (VTC2014-Fall), pp. 1–5, 2014.
[9] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-User Shared Access for
Internet of Things,” IEEE Vehicular Technology Conference (VTC Spring), pp. 1–5,
2016.
[10] A. Bayesteh, E. Yi, H. Nikopour, and H. Baligh, “Blind Detection of SCMA for Uplink
Grant-Free Multiple-Access,” International Symposium on Wireless Communications
Systems (ISWCS), pp. 853–857, 2014.
[11] D. Lin, G. Charbit, and I.-K. Fu, “Uplink Contention Based Multiple Access for 5G
Cellular IoT,” IEEE Vehicular Technology Conference, pp. 1–5, 2015.
[12] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo, “Spatial modulation for
generalized MIMO: Challenges, opportunities, and implementation,” Proceedings of the
IEEE, vol. 102, no. 1, pp. 56–103, 2014.
[13] E. Basar, “Index Modulation Techniques for 5G Wireless Networks,” IEEE Communications
Magazine, no. 114, pp. 168–175, 2016.
[14] A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “Generalised spatial modulation,”
Conference Record - Asilomar Conference on Signals, Systems and Computers, pp.
1498–1502, 2010.
[15] Y. Wang, S. Zhou, L. Xiao, X. Zhang, and J. Lian, “Sparse Bayesian Learning Based
User Detection and Channel Estimation for SCMA Uplink Systems,” International Conference
on Wireless Communications & Signal Processing (WCSP), pp. 1–5, 2015.
[16] R. Hoshyar, R. Razavi, and M. Al-Imari, “LDS-OFDM an Efficient Multiple Access
Technique,” IEEE 71st Vehicular Technology Conference, pp. 1–5, 2010.
[17] S.-C. Lim, N. Kim, and H. Park, “Uplink SCMA System with Multiple Antennas,”
IEEE Transactions on Vehicular Technology, pp. 6982–6992, 2017.
[18] L. Yang, Y. Liu, and Y. Siu, “Low Complexity Message Passing Algorithm for SCMA
System,” IEEE Communications Letters, pp. 2466–2469, 2016.
[19] E. G. Larsson, “MIMO Detection Methods: How They Work,” IEEE Signal Processing
Magazine, pp. 91–95, 2009.
[20] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected complexity,”
IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2806–2818, 2005.
[21] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in digital communications,”
IEEE Transactions on Signal Processing, pp. 1474–1484, 2005.
[22] V. P. Klimentyev and A. B. Sergienko, “Detection of SCMA Signal with Channel Estimation
Error,” Conference of Open Innovations Association and Seminar on Information
Security and Protection of Information Technology (FRUCT-ISPIT), pp. 106–112,
2016.
[23] A. B. Sergienko and V. P. Klimentyev, “SCMA Detection with Channel Estimation
Error and Resource Block Diversity,” International Siberian Conference on Control and
Communications (SIBCON), pp. 1–5, 2016.