簡易檢索 / 詳目顯示

研究生: 梁瑋光
Liang, Wei-Guang
論文名稱: 利用細胞模式探討GJC3突變造成非症候群聽障之功能研究
Investigation the GJC3 mutant caused nonsyndromic hearing loss using cell model
指導教授: 江安世
Chiang, Ann-Shyn
李宣佑
Li, Shuan-Yow
口試委員: 江安世
李宣佑
謝明麗
蕭光明
楊建洲
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 110
中文關鍵詞: 非症候群聽障GJC
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    細胞間隙接合溝通有許多功能,每一種功能皆是為了滿足組織、器官,或是一群細胞的特別需求。間隙連接通道是由連接蛋白connexin (CX) 組成的,每個connexin連接蛋白有四個穿膜區且在許多研究已經被證實和聽覺的功能有關。CX30.2/CX31.3 (GJC3)在CX家族中是屬於較新的成員。我們先前利用免疫組織染色法發現,老鼠的耳蝸表現Cx29 (同義於人類的CX30.2/CX31.3) 與其他Cxs蛋白家族成員 (如Cx26及Cx30) 所表現的位置相似,且這些位置對於維持耳蝸內的鉀離子再循環相當重要。然而到目前為止我們對於CX30.2/CX31.3蛋白的主要功能尚不清楚。我們實驗室先前針對台灣非症候群聽障病人中的篩檢,已經發現在GJC3基因 (CX30.2/CX31.3) 中有兩個錯意突變點包含p.R15G及p.L23H。而我們對於所發現的這兩個錯意突變所造成的影響及致病機轉並不清楚。
    因此在本研究中我們將分兩部分來探討:第一部分,我們想了解正常CX30.2/CX31.3蛋白的功能,包括在HeLa細胞的表現位置,能否有效地將染劑通透及形成間隙接合通道的特性。藉由免疫螢光染色法發現,CX30.2/CX31.3融合螢光蛋白會連續的表現在細胞膜上,而和一般的CX蛋白家族成員會在細胞間形成斑塊的現象不同。進一步分析間隙接合通道特性時,我們發現大部分染劑並無法在穩定表現CX30.2/CX31.3蛋白的HeLa細胞間通透,這與先前研究發現CX26可以通透染劑的情況不同。此外,在低鈣濃度下穩定表現CX30.2/CX31.3蛋白的HeLa細胞可以增加釋放ATP至細胞外。因此,我們認為CX30.2/CX31.3蛋白主要扮演的功能角色為hemichannel功能。
    第二部分,我們比較正常與含p.R15G及p.L23H突變的CX30.2/CX31.3蛋白在HeLa細胞內的表現位置,並分析是否造成CX30.2/CX31.3蛋白的功能喪失。利用免疫螢光染色法發現,我們發現含p.R15G或p.L23H的CX30.2/CX31.3突變蛋白,其表現位置和正常的CX30.2/CX31.3蛋白一樣會連續的表現在細胞膜上,並沒有影響其運送至細胞膜的能力。進一步我們發現在低鈣濃度下,含p.R15G或p.L23H突變基因的HeLa細胞比正常表現的細胞釋放更少的ATP至細胞外。因此,我們建議p.R15G和p.L23H這兩個突變確實會影響CX30.2/CX31.3蛋白的功能,進而可能造成聽障。
    綜合以上結果,我們認為CX30.2/CX31.3蛋白與Pannexin蛋白功能相似,主要扮演的功能角色為hemichannel功能,而不是像一般CX蛋白所形成的間隙接合通道功能。我們對於CX30.2/CX31.3蛋白在聽覺所扮演的功能有進一步的了解,這或許也提供了一些診斷的價值及治療的新方向。

    Abstract

    Gap junctional intercellular communication (GJIC) has numerous functions, each of which meets the particular needs of organs, tissues, or groups of cells. As a component of gap junction (GJ) channel, connexin (CX) is homologous four-transmembrane-domain proteins, with numerous studies confirming its auditory functions. CX30.2/CX31.3 (GJC3) is a relatively new member of the CX protein family. By using IHC analysis in our previous study, mouse Cx29, orthologs of human CX30.2/CX31.3, just like other Cxs (Cx26 and Cx30), were found in many parts of the cochlea along the proposed K+ recycling pathway. Until now, however, the functional characteristics of CX30.2/CX31.3 have been unclear. Among a cohort of patients having incurred nonsyndromic hearing loss, we identified two novel missense mutations, p.R15G and p.L23H, in the GJC3 gene encoding CX30.2/CX31.3, as causally related to hearing loss in previous study. However, the functional alteration of CX30.2/CX31.3 caused by the two mutants of GJC3 gene remains unknown.
    We divided this thesis into two parts:In the first part, to elucidate the properties of CX30.2/CX31.3 channels, their subcellular localization in HeLa cells, their effectiveness in dye transfer, and function on channels were investigated. In the immunofluorescent assay, cells that stably expressed CX30.2/CX31.3-EGFP exhibited continuous fluorescence along the apposed cell membranes, rather than punctated fluorescence in contacting membranes between two cells. To investigate the function properties on GJ, surprisingly, dyes that can be capable of being permeated by CX26 GJ, according to a scrape loading dye transfer assay in previous studies, are impermeated by CX30.2/CX31.3 GJ, suggesting a difference between the characteristics of CX30.2/CX31.3 GJ and CX26 GJ. Furthermore, a significant amount of ATP was released from the HeLa cells that stably expressed CX30.2/CX31.3, in a medium with low calcium ion concentration, suggesting a hemichannel-based function for CX30.2/CX31.3.
    In the second part, we compared the intracellular distribution of mutant CX30.2/CX31.3 (p.R15G and p.L23H) with the wild-type CX30.2/CX31.3 in HeLa cells and the effects of the mutant protein had on those cells. Analytical results indicated that p.R15G and p.L23H mutant exhibited continuous staining along apposed cell membranes in the fluorescent localization assay, which is the same with the wild type. The p.R15G and p.L23H mutant do not affect the trafficking of CX proteins. Moreover, ATP release assay results demonstrated that ATP release (hemichannel function) is less in HeLa cells carrying mutant GJC3 genes than those of wild type-expressing cells. We believe that although p.R15G and p.L23H mutants do not decrease the trafficking of CX proteins, mutations in GJC3 genes result in a loss of function of CX30.2/CX31.3 protein, possibly causing hearing loss.
    In conclusion, the work in this thesis provides information for understanding the function of CX30.2/CX31.3 in nonsyndromic deafness. These data together suggest that, unlike most gap junction channels of other CXs, CX30.2/CX31.3 may act as pannexin (hemi) channels and may provide some diagnostic values and therapeutic implications in hearing loss.


    Contents Table of Contents……………………………………………...………..…………….1 Abbreviations………………………………………………………………………7 中文摘要……………………………………………………………………………..9 Abstract…………………………………………………………………………….12 Chapter 1 General introduction 1-1 Introduction to how hearing work……………………………….…………….15 1-2 Introduction of hearing loss…………………………………..…..………...…18 1-3 Gap junction in the cochlea…………………………………………...……….20 1-4 Connexin expression in inner ear and gap junction function …………….…...23 1-5 Introduction of connexin……………………………………………………... 25 1-6 Connexin mutations and deafness……………………………………………..28 1-7 Specific aims………………………………………………………...………...31 1-8 Figures Figure 1. Schematic illustration of the human ear.……………………..…….32 Figure 2. Schematic illustrations of portions of the inner ear………………33 Figure 3. Schematic illustration of a potassium ion recycling mechanism in the mammalian cochlea.……………………………....…..……….…....34 Figure 4. Intercellular Ca2+-wave propagation in non-excitable cells involves both gap junctional intercellular communication (GJIC) and paracrine intercellular communication (PIC).……………………..…………..35 Figure 5. Membrane topology of connexins………………...…………………36 Figure 6. Schematic representation of the formation of gap junction (GJ) channels and hemichannels………………………………………......37 Figure 7. Structure and properties of connexin channels………………….….38 Figure 8. The cytoskeleton is involved in different steps of connexin turnover..39 Figure 9. A diagram showing the location of reported human CX26 mutations in the CX26 protein that are linked to hearing loss……………………..40 Figure 10. Summary of the expression patterns of Cx26, Cx30, Cx31, Cx43, and Cx29 in mouse cochlea……..…………………………………….41 Chapter 2 Human connexin30.2/31.3 (GJC3) does not form functional gap junction channels but causes enhanced ATP release in HeLa cells 2-1 Introduction ……………………………………………………………….......42 2-2 Materials and methods 2-2-1 Wild-type GJC3 gene EGFP expression constructs……………...……44 2-2-2 Expression of CX30.2/CX31.3 gap junction proteins in HeLa cells…..45 2-2-3 Immunofluorescence staining of post-transfection HeLa cells……......46 2-2-4 Reverse transcription-polymerase chain reaction (RT–PCR)……….…46 2-2-5 Scrape loading dye transfer ………………………………………...…47 2-2-6 ATP release assay…………………………………………..………….48 2-3 Results 2-3-1 Construction and selection of EGFP transfected clone……………….…49 2-3-2 The CX30.2/CX31.3WT expressed in cell membrane……………..….49 2-3-3 CX30.2/CX31.3 forms functional GJ channels different from CX26…...50 2-3-4 CX30.2/CX31.3 can form calcium-dependent hemichannels and release ATP…………………………………………………...………..……..…50 2-4 Discussion 2-4-1 Other similar CX………………………………………………………52 2-4-2 CX30.2/CX31.3 lack permeability with low molecular weight……..…..53 2-4-3 CX30.2/CX31.3 hemichannels were activated at low calcium concentrations………………………………………………...………….53 2-5 Tables Table 1. ATP release concentration in the Mock HeLa and CX30.2/CX31.3 stably expression HeLa cells…………………….…………….……55 2-6 Figures Figure 11. Expression analysis of GJC3 mRNA in the transfected HeLa cells by RT–PCR.…………………………………………………..…...56 Figure 12. Analysis of expression of CX30.2/CX31.3WT in stably transfected HeLa cells based on immunocytochemistry using pan-cadherin antibody…………………………………………………………....57 Figure 13. Dye transfer after scrape loading HeLa cells that stably express CX30.2/CX31.3.…………………………………………………..58 Figure 14. Dye transfer after scrape loading HeLa cells that stably express CX30.2/CX31.3…….……………………………………………..59 Figure 15. Analysis of activity of CX30.2/CX31.3 hemichannels based on ATP release…………………...………………………………………....60 Figure 16. The effect of 18A-GA on extracellular ATP levels…………...…...61 Chapter 3 Elucidating the contribution of two novel missense mutations in human GJC3 gene (connexin30.2/31.3) to nonsyndromic hearing loss 3-1 Introduction ………………………………...…………………………….......62 3-2 Materials and methods 3-2-1 Gene cloning and construction of the plasmids expressing wild-type or mutants CX30.2/CX31.3.…………..………..……………..……….…64 3-2-2 Cell culture and transfection…………………………....…...………....65 3-2-3 Immunofluorescence Staining of HeLa cells…………...………...……65 3-2-4 Extracellular ATP measurements……….…………...…….……..……66 3-3 Results 3-3-1 The domain structure of the CX30.2/CX31.3 protein………..……..…67 3-3-2 Alignment of the amino acid sequences of the average domain of human CX30.2/CX31.3………………………………………………….….….67 3-3-3 Construction and selection of EGFP transfected clone……………..…68 3-3-4 The mutant CX30.2/CX31.3 expressed in cell membrane………….…69 3-3-5 The mutant CX30.2/CX31.3 does not form functional channel….........69 3-4 Discussion 3-4-1 The possible reason why p.R15G mutant loss of function ……………71 3-4-2 The possible reason why p.L23H mutant loss of function…………….72 3-4-3 CX30.2/CX31.3 hemichannels were activated at low calcium concentrations………………………………………………………….73 3-5 Tables Table 2. ATP release concentration in the WT and mutant CX30.2/CX31.3 stably expression HeLa cell…………...…………...…….….……74 Table 3. ATP release concentration in the low Ca2+ condition after 18A-GA treatment………………………………………………………… 75 3-6 Figures Figure 17. Schematic representation of the domain structure of the CX30.2/CX31.3 protein with indication of known variants…...76 Figure 18. Alignment of the amino acid sequences of the average domain of human CX30.2/CX31.3 and members of human CX family…..77 Figure 19. ConSeq predictions demonstrated on human CX30.2/CX31.3 (NP_853516; SWISS-PROT Q8NFK1 (CXG3_Human), using 50 homologues obtained from the Pfam database (family code: PF00029)…………..…………………………………………78 Figure 20. Expression analysis of CX30.2/CX31.3 mRNA in the three transfected HeLa cells by RT-PCR…………….....................…79 Figure 21. Expression analysis of CX30.2/CX31.3 WT, CX30.2/CX31.3 R15G and CX30.2/CX31.3 L23H in stably transfected HeLa cells by immunocytochemistry using pan-cadherin antibody……….80 Figure 22. To analysis the activity of CX30.2/CX31.3 hemichannel functional via ATP release……………………….………...…81 Figure 23. The effect of 18A-GA on extracellular ATP levels of CX30.2/CX31.3 mutants……………………………………….82 Chapter 4 Conclusions and Future work……………………………………………….………..83 Reference………………………………………………………………………….….86 Publication list………………………………………………………………………110

    References

    Ahmad, S., Chen, S., Sun, J., and Lin, X. (2003). Connexins 26 and 30 are co-assembled to form gap junctions in the cochlea of mice. Biochem Biophys Res Commun 307, 362-368.
    Ahmad, S., and Evans, W.H. (2002). Post-translational integration and oligomerization of connexin 26 in plasma membranes and evidence of formation of membrane pores: implications for the assembly of gap junctions. Biochem J 365, 693-699.
    Altevogt, B.M., Kleopa, K.A., Postma, F.R., Scherer, S.S., and Paul, D.L. (2002). Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci 22, 6458-6470.
    Anselmi, F., Hernandez, V.H., Crispino, G., Seydel, A., Ortolano, S., Roper, S.D., Kessaris, N., Richardson, W., Rickheit, G., Filippov, M.A., et al. (2008). ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci U S A 105, 18770-18775.
    Beardslee, M.A., Laing, J.G., Beyer, E.C., and Saffitz, J.E. (1998). Rapid turnover of connexin43 in the adult rat heart. Circ Res 83, 629-635.
    Beltramello, M., Bicego, M., Piazza, V., Ciubotaru, C.D., Mammano, F., and D'Andrea, P. (2003). Permeability and gating properties of human connexins 26 and 30 expressed in HeLa cells. Biochem Biophys Res Commun 305, 1024-1033.
    Beltramello, M., Piazza, V., Bukauskas, F.F., Pozzan, T., and Mammano, F. (2005). Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7, 63-69.
    Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., Casadio, R., and Ben-Tal, N. (2004). ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics 20, 1322-1324.
    Bergoffen, J., Scherer, S.S., Wang, S., Scott, M.O., Bone, L.J., Paul, D.L., Chen, K., Lensch, M.W., Chance, P.F., and Fischbeck, K.H. (1993). Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 2039-2042.
    Betts MJ, R.R., ed. (2003). Amino acid properties and consequences of substitutions. (USA., Wiley).
    Beyer, E.C., Paul, D.L., and Goodenough, D.A. (1987). Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105, 2621-2629.
    Bitner-Glindzicz, M. (2002). Hereditary deafness and phenotyping in humans. Br Med Bull 63, 73-94.
    Bosher, S.K., and Warren, R.L. (1978). Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273, 377-378.
    Bruzzone, R., White, T.W., and Paul, D.L. (1996). Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238, 1-27.
    Charles, A. (2005). Reaching out beyond the synapse: glial intercellular waves coordinate metabolism. Sci STKE 2005, pe6.
    Cohen-Salmon, M., Ott, T., Michel, V., Hardelin, J.P., Perfettini, I., Eybalin, M., Wu, T., Marcus, D.C., Wangemann, P., Willecke, K., et al. (2002). Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12, 1106-1111.
    Conte, G., Martinuzzi, N., Giovannelli, L., Pucci, B., and Masi, F. (2001). Constructed wetlands for wastewater treatment in central Italy. Water Sci Technol 44, 339-343.
    Contreras, J.E., Saez, J.C., Bukauskas, F.F., and Bennett, M.V. (2003). Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci U S A 100, 11388-11393.
    Contreras, J.E., Sanchez, H.A., Eugenin, E.A., Speidel, D., Theis, M., Willecke, K., Bukauskas, F.F., Bennett, M.V., and Saez, J.C. (2002). Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci U S A 99, 495-500.
    D'Hondt, C., Ponsaerts, R., De Smedt, H., Bultynck, G., and Himpens, B. (2009). Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 31, 953-974.
    Dahl, G., and Locovei, S. (2006). Pannexin: to gap or not to gap, is that a question? IUBMB Life 58, 409-419.
    De Vuyst, E., Decrock, E., Cabooter, L., Dubyak, G.R., Naus, C.C., Evans, W.H., and Leybaert, L. (2006). Intracellular calcium changes trigger connexin 32 hemichannel opening. EMBO J 25, 34-44.
    Denoyelle, F., Lina-Granade, G., Plauchu, H., Bruzzone, R., Chaib, H., Levi-Acobas, F., Weil, D., and Petit, C. (1998). Connexin 26 gene linked to a dominant deafness. Nature 393, 319-320.
    Diez, J.A., Ahmad, S., and Evans, W.H. (1999). Assembly of heteromeric connexons in guinea-pig liver en route to the Golgi apparatus, plasma membrane and gap junctions. Eur J Biochem 262, 142-148.
    Dobrowolski, R., Sommershof, A., and Willecke, K. (2007). Some oculodentodigital dysplasia-associated Cx43 mutations cause increased hemichannel activity in addition to deficient gap junction channels. J Membr Biol 219, 9-17.
    Dror, A.A., and Avraham, K.B. (2009). Hearing loss: mechanisms revealed by genetics and cell biology. Annu Rev Genet 43, 411-437.
    Evans, W.H., De Vuyst, E., and Leybaert, L. (2006). The gap junction cellular internet: connexin hemichannels enter the signalling limelight. Biochem J 397, 1-14.
    Faigle, M., Seessle, J., Zug, S., El Kasmi, K.C., and Eltzschig, H.K. (2008). ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS One 3, e2801.
    Falk, M.M., Buehler, L.K., Kumar, N.M., and Gilula, N.B. (1997). Cell-free synthesis and assembly of connexins into functional gap junction membrane channels. EMBO J 16, 2703-2716.
    Falk, M.M., Kumar, N.M., and Gilula, N.B. (1994). Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol 127, 343-355.
    Forge, A., Becker, D., Casalotti, S., Edwards, J., Evans, W.H., Lench, N., and Souter, M. (1999). Gap junctions and connexin expression in the inner ear. Novartis Found Symp 219, 134-150; discussion 151-136.
    Forge, A., Becker, D., Casalotti, S., Edwards, J., Marziano, N., and Nevill, G. (2003a). Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals. J Comp Neurol 467, 207-231.
    Forge, A., Becker, D., Casalotti, S., Edwards, J., Marziano, N., and Nickel, R. (2002). Connexins and gap junctions in the inner ear. Audiol Neurootol 7, 141-145.
    Forge, A., Marziano, N.K., Casalotti, S.O., Becker, D.L., and Jagger, D. (2003b). The inner ear contains heteromeric channels composed of cx26 and cx30 and deafness-related mutations in cx26 have a dominant negative effect on cx30. Cell Commun Adhes 10, 341-346.
    Frenz, C.M., and Van De Water, T.R. (2000). Immunolocalization of connexin 26 in the developing mouse cochlea. Brain Res Brain Res Rev 32, 172-180.
    George, C.H., Kendall, J.M., and Evans, W.H. (1999). Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem 274, 8678-8685.
    George, C.H., Martin, P.E., and Evans, W.H. (1998). Rapid determination of gap junction formation using HeLa cells microinjected with cDNAs encoding wild-type and chimeric connexins. Biochem Biophys Res Commun 247, 785-789.
    Giepmans, B.N., Verlaan, I., Hengeveld, T., Janssen, H., Calafat, J., Falk, M.M., and Moolenaar, W.H. (2001a). Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11, 1364-1368.
    Giepmans, B.N., Verlaan, I., and Moolenaar, W.H. (2001b). Connexin-43 interactions with ZO-1 and alpha- and beta-tubulin. Cell Commun Adhes 8, 219-223.
    Gillespie, P.G., and Muller, U. (2009). Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139, 33-44.
    Gilula, N.B., Reeves, O.R., and Steinbach, A. (1972). Metabolic coupling, ionic coupling and cell contacts. Nature 235, 262-265.
    Gimlich, R.L., Kumar, N.M., and Gilula, N.B. (1990). Differential regulation of the levels of three gap junction mRNAs in Xenopus embryos. J Cell Biol 110, 597-605.
    Goodenough, D.A., and Revel, J.P. (1970). A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol 45, 272-290.
    Gorlin RJ, T.H., Cohen MMJ. (1995). Hereditary hearing loss and its syndromes. . Oxford: Oxford University Press.
    Grifa, A., Wagner, C.A., D'Ambrosio, L., Melchionda, S., Bernardi, F., Lopez-Bigas, N., Rabionet, R., Arbones, M., Monica, M.D., Estivill, X., et al. (1999). Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23, 16-18.
    Guilford, P., Ben Arab, S., Blanchard, S., Levilliers, J., Weissenbach, J., Belkahia, A., and Petit, C. (1994). A non-syndrome form of neurosensory, recessive deafness maps to the pericentromeric region of chromosome 13q. Nat Genet 6, 24-28.
    Hamelmann, C., Amedofu, G.K., Albrecht, K., Muntau, B., Gelhaus, A., Brobby, G.W., and Horstmann, R.D. (2001). Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum Mutat 18, 84-85.
    Harris, A.L., & Locke, D. , ed. (2009). Connexin-A guide (New York: Human Press.).
    Hepper, P.G., and Shahidullah, B.S. (1994). Development of fetal hearing. Arch Dis Child 71, F81-87.
    Herve, J.C., Bourmeyster, N., Sarrouilhe, D., and Duffy, H.S. (2007). Gap junctional complexes: from partners to functions. Prog Biophys Mol Biol 94, 29-65.
    Himpens, B., Stalmans, P., Gomez, P., Malfait, M., and Vereecke, J. (1999). Intra- and intercellular Ca2+ signaling in retinal pigment epithelial cells during mechanical stimulation. FASEB J 13 Suppl, S63-68.
    Hoang Dinh, E., Ahmad, S., Chang, Q., Tang, W., Stong, B., and Lin, X. (2009). Diverse deafness mechanisms of connexin mutations revealed by studies using in vitro approaches and mouse models. Brain Res 1277, 52-69.
    Hong, H.M., Yang, J.J., Su, C.C., Chang, J.Y., Li, T.C., and Li, S.Y. (2010). A novel mutation in the connexin 29 gene may contribute to nonsyndromic hearing loss. Hum Genet 127, 191-199.
    John, S.A., Kondo, R., Wang, S.Y., Goldhaber, J.I., and Weiss, J.N. (1999). Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274, 236-240.
    Kammen-Jolly, K., Ichiki, H., Scholtz, A.W., Gsenger, M., Kreczy, A., and Schrott-Fischer, A. (2001). Connexin 26 in human fetal development of the inner ear. Hear Res 160, 15-21.
    Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., and Nedergaard, M. (2008). Connexin 43 hemichannels are permeable to ATP. J Neurosci 28, 4702-4711.
    Kelley, P.M., Abe, S., Askew, J.W., Smith, S.D., Usami, S., and Kimberling, W.J. (1999). Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Genomics 62, 172-176.
    Kelley, P.M., Harris, D.J., Comer, B.C., Askew, J.W., Fowler, T., Smith, S.D., and Kimberling, W.J. (1998). Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet 62, 792-799.
    Kikuchi, T., Adams, J.C., Miyabe, Y., So, E., and Kobayashi, T. (2000a). Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc 33, 51-56.
    Kikuchi, T., Kimura, R.S., Paul, D.L., and Adams, J.C. (1995). Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191, 101-118.
    Kikuchi, T., Kimura, R.S., Paul, D.L., Takasaka, T., and Adams, J.C. (2000b). Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 32, 163-166.
    King, A.J., Schnupp, J.W., and Doubell, T.P. (2001). The shape of ears to come: dynamic coding of auditory space. Trends Cogn Sci 5, 261-270.
    Kudo, T., Kure, S., Ikeda, K., Xia, A.P., Katori, Y., Suzuki, M., Kojima, K., Ichinohe, A., Suzuki, Y., Aoki, Y., et al. (2003). Transgenic expression of a dominant-negative connexin26 causes degeneration of the organ of Corti and non-syndromic deafness. Hum Mol Genet 12, 995-1004.
    Kumar, N.M., and Gilula, N.B. (1986). Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol 103, 767-776.
    Kumar, N.M., and Gilula, N.B. (1992). Molecular biology and genetics of gap junction channels. Semin Cell Biol 3, 3-16.
    Kumar, N.M., and Gilula, N.B. (1996). The gap junction communication channel. Cell 84, 381-388.
    Lai, A., Le, D.N., Paznekas, W.A., Gifford, W.D., Jabs, E.W., and Charles, A.C. (2006). Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells. J Cell Sci 119, 532-541.
    Laird, D.W. (2006). Life cycle of connexins in health and disease. Biochem J 394, 527-543.
    Laird, D.W., Castillo, M., and Kasprzak, L. (1995). Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells. J Cell Biol 131, 1193-1203.
    Laird, D.W., Puranam, K.L., and Revel, J.P. (1991). Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1), 67-72.
    Lampe, P.D. (1994). Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J Cell Biol 127, 1895-1905.
    Larsen, W.J., Tung, H.N., Murray, S.A., and Swenson, C.A. (1979). Evidence for the participation of actin microfilaments and bristle coats in the internalization of gap junction membrane. J Cell Biol 83, 576-587.
    Lautermann, J., Frank, H.G., Jahnke, K., Traub, O., and Winterhager, E. (1999). Developmental expression patterns of connexin26 and -30 in the rat cochlea. Dev Genet 25, 306-311.
    Lautermann, J., ten Cate, W.J., Altenhoff, P., Grummer, R., Traub, O., Frank, H., Jahnke, K., and Winterhager, E. (1998). Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294, 415-420.
    Lehninger AL, N.D., Cox MM, ed. (2000). Principles of biochemistry, 3rd edn.
    Leube, R.E. (1995). The topogenic fate of the polytopic transmembrane proteins, synaptophysin and connexin, is determined by their membrane-spanning domains. J Cell Sci 108 ( Pt 3), 883-894.
    Liu, X.Z., Xia, X.J., Adams, J., Chen, Z.Y., Welch, K.O., Tekin, M., Ouyang, X.M., Kristiansen, A., Pandya, A., Balkany, T., et al. (2001). Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet 10, 2945-2951.
    Lopez-Bigas, N., Arbones, M.L., Estivill, X., and Simonneau, L. (2002). Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea. Gene Expr Patterns 2, 113-117.
    Maeda, S., Nakagawa, S., Suga, M., Yamashita, E., Oshima, A., Fujiyoshi, Y., and Tsukihara, T. (2009). Structure of the connexin 26 gap junction channel at 3.5 A resolution. Nature 458, 597-602.
    Makowski, L., Caspar, D.L., Phillips, W.C., and Goodenough, D.A. (1977). Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol 74, 629-645.
    Marazita, M.L., Ploughman, L.M., Rawlings, B., Remington, E., Arnos, K.S., and Nance, W.E. (1993). Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet 46, 486-491.
    Martin, H., ed. (2003). The auditory system. In Neuroanatomy ( New York: McGraw-Hill Professional).
    Martin, P.E., and Evans, W.H. (2004). Incorporation of connexins into plasma membranes and gap junctions. Cardiovasc Res 62, 378-387.
    Martin, P.E., George, C.H., Castro, C., Kendall, J.M., Capel, J., Campbell, A.K., Revilla, A., Barrio, L.C., and Evans, W.H. (1998). Assembly of chimeric connexin-aequorin proteins into functional gap junction channels. Reporting intracellular and plasma membrane calcium environments. J Biol Chem 273, 1719-1726.
    Martinez, A.D., Acuna, R., Figueroa, V., Maripillan, J., and Nicholson, B. (2009). Gap-junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal 11, 309-322.
    Marziano, N.K., Casalotti, S.O., Portelli, A.E., Becker, D.L., and Forge, A. (2003). Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet 12, 805-812.
    Milks, L.C., Kumar, N.M., Houghten, R., Unwin, N., and Gilula, N.B. (1988). Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J 7, 2967-2975.
    Morton, C.C. (2002). Genetics, genomics and gene discovery in the auditory system. Hum Mol Genet 11, 1229-1240.
    Morton, N.E. (1991). Genetic epidemiology of hearing impairment. Ann N Y Acad Sci 630, 16-31.
    Musil, L.S., and Goodenough, D.A. (1991). Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115, 1357-1374.
    Neumann, K., and Stephens, D. (2011). Definitions of types of hearing impairment: a discussion paper. Folia Phoniatr Logop 63, 43-48.
    Olk, S., Zoidl, G., and Dermietzel, R. (2009). Connexins, cell motility, and the cytoskeleton. Cell Motil Cytoskeleton 66, 1000-1016.
    Ortolano, S., Di Pasquale, G., Crispino, G., Anselmi, F., Mammano, F., and Chiorini, J.A. (2008). Coordinated control of connexin 26 and connexin 30 at the regulatory and functional level in the inner ear. Proc Natl Acad Sci U S A 105, 18776-18781.
    Pallares-Ruiz, N., Blanchet, P., Mondain, M., Claustres, M., and Roux, A.F. (2002). A large deletion including most of GJB6 in recessive non syndromic deafness: a digenic effect? Eur J Hum Genet 10, 72-76.
    Paul, D.L. (1986). Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 103, 123-134.
    Pearson, R.A., Dale, N., Llaudet, E., and Mobbs, P. (2005). ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46, 731-744.
    Penuela, S., Bhalla, R., Gong, X.Q., Cowan, K.N., Celetti, S.J., Cowan, B.J., Bai, D., Shao, Q., and Laird, D.W. (2007). Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120, 3772-3783.
    Petit, C., Levilliers, J., and Hardelin, J.P. (2001). Molecular genetics of hearing loss. Annu Rev Genet 35, 589-646.
    Pfahnl, A., and Dahl, G. (1999). Gating of cx46 gap junction hemichannels by calcium and voltage. Pflugers Arch 437, 345-353.
    Piehl, M., Lehmann, C., Gumpert, A., Denizot, J.P., Segretain, D., and Falk, M.M. (2007). Internalization of large double-membrane intercellular vesicles by a clathrin-dependent endocytic process. Mol Biol Cell 18, 337-347.
    Qu, C., Gardner, P., and Schrijver, I. (2009). The role of the cytoskeleton in the formation of gap junctions by Connexin 30. Exp Cell Res 315, 1683-1692.
    Raphael, Y., and Altschuler, R.A. (2003). Structure and innervation of the cochlea. Brain Res Bull 60, 397-422.
    Reale, E., Luciano, L., Franke, K., Pannese, E., Wermbter, G., and Iurato, S. (1975). Intercellular junctions in the vascular stria and spiral ligament. J Ultrastruct Res 53, 284-297.
    Regina Nickel, ed. (2009). Connexin in the inner ear.
    Resendes, B.L., Williamson, R.E., and Morton, C.C. (2001). At the speed of sound: gene discovery in the auditory system. Am J Hum Genet 69, 923-935.
    Richardson, G.P., Lukashkin, A.N., and Russell, I.J. (2008). The tectorial membrane: one slice of a complex cochlear sandwich. Curr Opin Otolaryngol Head Neck Surg 16, 458-464.
    Rubin, J.B., Verselis, V.K., Bennett, M.V., and Bargiello, T.A. (1992). A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc Natl Acad Sci U S A 89, 3820-3824.
    Saez, J.C., Berthoud, V.M., Branes, M.C., Martinez, A.D., and Beyer, E.C. (2003). Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83, 1359-1400.
    Saez, J.C., Retamal, M.A., Basilio, D., Bukauskas, F.F., and Bennett, M.V. (2005). Connexin-based gap junction hemichannels: gating mechanisms. Biochim Biophys Acta 1711, 215-224.
    Sanderson, M.J., Charles, A.C., and Dirksen, E.R. (1990). Mechanical stimulation and intercellular communication increases intracellular Ca2+ in epithelial cells. Cell Regul 1, 585-596.
    Santos-Sacchi, J. (1985). The effects of cytoplasmic acidification upon electrical coupling in the organ of Corti. Hear Res 19, 207-215.
    Santos-Sacchi, J. (1986). Dye coupling in the organ of Corti. Cell Tissue Res 245, 525-529.
    Santos-Sacchi, J. (1987). Electrical coupling differs in the in vitro and in vivo organ of Corti. Hear Res 25, 227-232.
    Sargiannidou, I., Ahn, M., Enriquez, A.D., Peinado, A., Reynolds, R., Abrams, C., Scherer, S.S., and Kleopa, K.A. (2008). Human oligodendrocytes express Cx31.3: function and interactions with Cx32 mutants. Neurobiol Dis 30, 221-233.
    Sohl, G., Eiberger, J., Jung, Y.T., Kozak, C.A., and Willecke, K., eds. (2001). The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development, 2001/08/15 edn.
    Sohl, G., and Willecke, K. (2003). An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10, 173-180.
    Sohl, G., and Willecke, K. (2004). Gap junctions and the connexin protein family. Cardiovasc Res 62, 228-232.
    Sonntag, S., Sohl, G., Dobrowolski, R., Zhang, J., Theis, M., Winterhager, E., Bukauskas, F.F., and Willecke, K. (2009). Mouse lens connexin23 (Gje1) does not form functional gap junction channels but causes enhanced ATP release from HeLa cells. Eur J Cell Biol 88, 65-77.
    Sosinsky, G.E., Jesior, J.C., Caspar, D.L., and Goodenough, D.A. (1988). Gap junction structures. VIII. Membrane cross-sections. Biophys J 53, 709-722.
    Spicer, S.S., and Schulte, B.A. (1996). The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res 100, 80-100.
    Spicer, S.S., and Schulte, B.A. (1998). Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res 118, 1-12.
    Steel, K.P., Barkway, C., and Bock, G.R. (1987). Strial dysfunction in mice with cochleo-saccular abnormalities. Hear Res 27, 11-26.
    Stout, C.E., Costantin, J.L., Naus, C.C., and Charles, A.C. (2002). Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277, 10482-10488.
    Su, C.C., Li, S.Y., Su, M.C., Chen, W.C., and Yang, J.J. (2010). Mutation R184Q of connexin 26 in hearing loss patients has a dominant-negative effect on connexin 26 and connexin 30. Eur J Hum Genet 18, 1061-1064.
    Sun, J., Ahmad, S., Chen, S., Tang, W., Zhang, Y., Chen, P., and Lin, X. (2005). Cochlear gap junctions coassembled from Cx26 and 30 show faster intercellular Ca2+ signaling than homomeric counterparts. Am J Physiol Cell Physiol 288, C613-623.
    Tang, W., Zhang, Y., Chang, Q., Ahmad, S., Dahlke, I., Yi, H., Chen, P., Paul, D.L., and Lin, X. (2006). Connexin29 is highly expressed in cochlear Schwann cells, and it is required for the normal development and function of the auditory nerve of mice. J Neurosci 26, 1991-1999.
    Teubner, B., Michel, V., Pesch, J., Lautermann, J., Cohen-Salmon, M., Sohl, G., Jahnke, K., Winterhager, E., Herberhold, C., Hardelin, J.P., et al. (2003). Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12, 13-21.
    Torok, K., Stauffer, K., and Evans, W.H. (1997). Connexin 32 of gap junctions contains two cytoplasmic calmodulin-binding domains. Biochem J 326 ( Pt 2), 479-483.
    Traub, O., Druge, P.M., and Willecke, K. (1983). Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis. Proc Natl Acad Sci U S A 80, 755-759.
    Valiunas, V. (2002). Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119, 147-164.
    Valiunas, V., and Weingart, R. (2000). Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflugers Arch 440, 366-379.
    Verselis, V.K., Ginter, C.S., and Bargiello, T.A. (1994). Opposite voltage gating polarities of two closely related connexins. Nature 368, 348-351.
    Wall, M.E., Otey, C., Qi, J., and Banes, A.J. (2007). Connexin 43 is localized with actin in tenocytes. Cell Motil Cytoskeleton 64, 121-130.
    Wang, W.H., Yang, J.J., Lin, Y.C., Yang, J.T., Chan, C.H., and Li, S.Y. (2010). Identification of novel variants in the Cx29 gene of nonsyndromic hearing loss patients using buccal cells and restriction fragment length polymorphism method. Audiol Neurootol 15, 81-87.
    Watanabe, H., Washioka, H., and Tonosaki, A. (1988). Gap junction and its cytoskeletal undercoats as involved in invagination-endocytosis. Tohoku J Exp Med 156, 175-190.
    Willecke, K., Eiberger, J., Degen, J., Eckardt, D., Romualdi, A., Guldenagel, M., Deutsch, U., and Sohl, G. (2002). Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383, 725-737.
    Willems, P.J. (2000). Genetic causes of hearing loss. N Engl J Med 342, 1101-1109.
    Xia, A.P., Ikeda, K., Katori, Y., Oshima, T., Kikuchi, T., and Takasaka, T. (2000). Expression of connexin 31 in the developing mouse cochlea. Neuroreport 11, 2449-2453.
    Xia, J.H., Liu, C.Y., Tang, B.S., Pan, Q., Huang, L., Dai, H.P., Zhang, B.R., Xie, W., Hu, D.X., Zheng, D., et al. (1998). Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 20, 370-373.
    Yancey, S.B., John, S.A., Lal, R., Austin, B.J., and Revel, J.P. (1989). The 43-kD polypeptide of heart gap junctions: immunolocalization, topology, and functional domains. J Cell Biol 108, 2241-2254.
    Yang, J.J., Huang, S.H., Chou, K.H., Liao, P.J., Su, C.C., and Li, S.Y. (2007). Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol Neurootol 12, 198-208.
    Yang, J.J., Liao, P.J., Su, C.C., and Li, S.Y. (2005). Expression patterns of connexin 29 (GJE1) in mouse and rat cochlea. Biochem Biophys Res Commun 338, 723-728.
    Yang, J.J., Wang, W.H., Lin, Y.C., Weng, H.H., Yang, J.T., Hwang, C.F., Wu, C.M., and Li, S.Y. (2010). Prospective variants screening of connexin genes in children with hearing impairment: genotype/phenotype correlation. Hum Genet 128, 303-313.
    Yeager, M., and Gilula, N.B. (1992). Membrane topology and quaternary structure of cardiac gap junction ion channels. J Mol Biol 223, 929-948.
    Yum, S.W., Zhang, J., Valiunas, V., Kanaporis, G., Brink, P.R., White, T.W., and Scherer, S.S. (2007). Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol 293, C1032-1048.
    Zhang, J.T., and Nicholson, B.J. (1994). The topological structure of connexin 26 and its distribution compared to connexin 32 in hepatic gap junctions. J Membr Biol 139, 15-29.
    Zhao, H.B. (2000). Directional rectification of gap junctional voltage gating between dieters cells in the inner ear of guinea pig. Neurosci Lett 296, 105-108.
    Zhao, H.B., Kikuchi, T., Ngezahayo, A., and White, T.W. (2006). Gap junctions and cochlear homeostasis. J Membr Biol 209, 177-186.
    Zhao, H.B., and Santos-Sacchi, J. (1998). Effect of membrane tension on gap junctional conductance of supporting cells in Corti's organ. J Gen Physiol 112, 447-455.
    Zhao, H.B., and Santos-Sacchi, J. (1999). Auditory collusion and a coupled couple of outer hair cells. Nature 399, 359-362.
    Zhao, H.B., and Santos-Sacchi, J. (2000). Voltage gating of gap junctions in cochlear supporting cells: evidence for nonhomotypic channels. J Membr Biol 175, 17-24.
    Zhao, H.B., Yu, N., and Fleming, C.R. (2005). Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci U S A 102, 18724-18729.
    Zhou, X.W., Pfahnl, A., Werner, R., Hudder, A., Llanes, A., Luebke, A., and Dahl, G. (1997). Identification of a pore lining segment in gap junction hemichannels. Biophys J 72, 1946-1953.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE