研究生: |
符伯緯 |
---|---|
論文名稱: |
自製曝光系統 應用於製作磁膜圖形細胞載具 Establishment of Mask Aligner Applied on the Magnetic Cell Vehicle Fabrication |
指導教授: | 衛榮漢 |
口試委員: |
衛榮漢
賴梅鳳 賴俊陽 黃皓庭 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 生物晶片 、細胞載具 、微機電系統 、曝光系統 、磁性微結構 |
相關次數: | 點閱:115 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微機電領域有十分巨大的研究發展及產業價值,有許多的研究團隊投入相關領域的研究與找尋發展契機。因此,本文第一部分先以自行架設之曝光系統,進行相關曝光參數的最佳化測式後,再將其應用於進行微影製程。在進行微機電技術結合於生物醫學研究之實務應用上,由於微機電元件尺寸與細胞大小接近,適合結合於微觀之生物醫學領域上,常稱作生物晶片。其中,利用微影製程進行圖形化定義後進行細胞排列為細胞圖形化技術常用之方法,而細胞載具則特指運輸細胞之設計。故本論文第二部分將以架設完善之曝光系統,應用於製備磁膜圖形細胞載具,藉由磁性材料可於外加的磁場調變的概念,以其設計圖性化之磁性微結構以達成運輸及操控細胞的空間分布之目的。本文最終已驗證自製曝光系統之可行性並發展出一套適用於實驗室環境之曝光系統,且將此系統實際應用磁膜圖形細胞載具之製作與實驗中,於微機電結合生醫之應用十分具淺力與發展價值。
Microelectromechanical Systems (MEMS) has been attracted for both academy and industry. New applications are emerging since the existing of MEMS technology. In the first part of the thesis, an exposure system for photolithography had been established and the related parameter had been optimized for the later experiments. Since the size of MEMS devices is similar to the biological cells, they are suitable to be integrated into biomedical application system. Therefore, the second part of the thesis is to apply the exposure system to fabricate micro-patterned vehicles for carrying biological cells. Since the magnetic based devices could be remote-controlled by external magnetic field, a magnetic based cell vehicles with particular pattern had been fabricated to manipulate biological cell and pattern cell spatially. The results of the thesis have demonstrated the functionality of the photolithography exposure system and the adaptation as fabrication equipment for common laboratories. The success in fabricating the magnetic patterned cell vehicle had shown the potentiality of the exposure system in research field of Bio-MEMS.
[1] J. N. Helbert, Handbook of VLSI microlithography: Access Online via Elsevier, 2001.
[2] T. M. Adams and R. A. Layton, Introductory MEMS: fabrication and applications: springer New York, 2010.
[3] L. F. Thompson and J. M. G. Cowie, Introduction to microlithography. Edited by L. F. Thompson, C. G . Willson and M. J. Bowden, ACS Symposium Series No. 219, American Chemical Society, Washington DC, 1983.
[4] C. Sheppard and M. Hrynevych, "Diffraction by a circular aperture: a generalization of Fresnel diffraction theory," Optical Society of America A, vol. 9, pp. 274-281, 1992.
[5] J. H. Bruning, "Optical lithography: 40 years and holding," in Proc. SPIE, p. 652004, 2007.
[6] 嚴密、彭曉領, "磁學基礎與磁性材料," 2006.
[7] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2011.
[8] C. Kittel and B. C. Kittel, "Introduction to solid state physics," 1986.
[9] D. J. Vasquez and J. W. Judy, "Flexure-based nanomagnetic actuators and their ultimate scaling limits," Mems 2008: 21st IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest, pp. 737-741, 2008.
[10] S. B. Carter, "Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation," Experimental Cell Research, vol. 48, pp. 189-193, 1967.
[11] S. B. Carter, "Principles of cell motility: the direction of cell movement and cancer invasion," Nature, vol. 208, pp. 1183-1187, 1965.
[12] S. B. Carter, "Haptotaxis and the mechanism of cell motility," Nature, vol. 213, pp. 256-260, 1967.
[13] C. A. Goubko and X. D. Cao, "Patterning multiple cell types in co-cultures: A review," Materials Science & Engineering C-Materials for Biological Applications, vol. 29, pp. 1855-1868, 2009.
[14] T. H. Park and M. L. Shuler, "Integration of cell culture and microfabrication technology," Biotechnology Progress, vol. 19, pp. 243-253, 2003.
[15] B. Lom, K. E. Healy, and P. E. Hockberger, "A versatile technique for patterning biomolecules onto glass coverslips," Journal of Neuroscience Methods, vol. 50, pp. 385-397, 1993.
[16] S. Britland, E. Perez-Arnaud, P. Clark, B. McGinn, P. Connolly, and G. Moores, "Micropatterning proteins and synthetic peptides on solid supports: a novel application for microelectronics fabrication technology," Biotechnology Progress, vol. 8, pp. 155-160, 1992.
[17] S. N. Bhatia, M. L. Yarmush, and M. Toner, "Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts," Journal of Biomedical Materials Research, vol. 34, pp. 189-199, 1997.
[18] D. Falconnet, G. Csucs, H. Michelle Grandin, and M. Textor, "Surface engineering approaches to micropattern surfaces for cell-based assays," Biomaterials, vol. 27, pp. 3044-3063, 2006.
[19] C. Y. Fan, Y. C. Tung, S. Takayama, E. Meyhöfer, and K. Kurabayashi, "Electrically programmable surfaces for configurable patterning of cells," Advanced Materials, vol. 20, pp. 1418-1423, 2008.
[20] T. Kimura, Y. Sato, F. Kimura, M. Iwasaka, and S. Ueno, "Micropatterning of cells using modulated magnetic fields," Langmuir, vol. 21, pp. 830-832, 2005.
[21] M. Veiseh, O. Veiseh, M. C. Martin, F. Asphahani, and M. Zhang, "Short peptides enhance single cell adhesion and viability on microarrays," Langmuir, vol. 23, pp. 4472-4479, 2007.
[22] M. Tanase, E. J. Felton, D. S. Gray, A. Hultgren, C. S. Chen, and D. H. Reich, "Assembly of multicellular constructs and microarrays of cells using magnetic nanowires," Lab on a Chip, vol. 5, pp. 598-605, 2005.
[23] D. Kleinfeld, K. Kahler, and P. Hockberger, "Controlled outgrowth of dissociated neurons on patterned substrates," The Journal of Neuroscience, vol. 8, pp. 4098-4120, 1988.
[24] B. E. Uygun, A. Soto-Gutierrez, H. Yagi, M.-L. Izamis, M. A. Guzzardi, C. Shulman, et al., "Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix," Nature Medicine, vol. 16, pp. 814-820, 2010.
[25] J. Shim, T. F. Bersano-Begey, X. Zhu, A. H. Tkaczyk, J. J. Linderman, and S. Takayama, "Micro-and nanotechnologies for studying cellular function," Current Topics in Medicinal Chemistry, vol. 3, pp. 687-703, 2003.
[26] R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. Wang, G. M. Whitesides, et al., "Engineering cell shape and function," Science, vol. 264, pp. 696-698, 1994.
[27] H. Lee, A. Purdon, and R. Westervelt, "Manipulation of biological cells using a microelectromagnet matrix," Applied PhysicsLletters, vol. 85, pp. 1063-1065, 2004.
[28] J. Dobson, "Remote control of cellular behaviour with magnetic nanoparticles," Nature Nanotechnology, vol. 3, pp. 139-143, 2008.
[29] Y. Cho, R. Shi, A. Ivanisevic, and R. B. Borgens, "A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer," Nanotechnology, vol. 20, 2009.
[30] A. M. Nowicka, A. Kowalczyk, M. Donten, P. Krysinski, and Z. Stojek, "Influence of a magnetic nanoparticle as a drug carrier on the activity of anticancer drugs: Interactions of double stranded DNA and doxorubicin modified with a carrier," Analytical Chemistry, vol. 81, pp. 7474-7483, 2009.
[31] N. Pamme, "Magnetism and microfluidics," Lab on a Chip, vol. 6, pp. 24-38, 2006.
[32] Q. Ramadan, C. Yu, V. Samper, and D. P. Poenar, "Microcoils for transport of magnetic beads," Applied Physics Letters, vol. 88, pp. 032501-032501, 2006.
[33] H. Onoe and S. Takeuchi, "Microfabricated mobile microplates for handling single adherent cells," Journal of Micromechanics and Microengineering, vol. 18, 2008.
[34] B. Radha, M. Arif, R. Datta, T. K. Kundu, and G. U. Kulkarni, "Movable Au microplates as fluorescence enhancing substrates for live cells," Nano Research, vol. 3, pp. 738-747, 2010.
[35] S. Yoshida, T. Teshima, K. Kuribayashi-Shigetomi, and S. Takeuchi, "Single neural cells on mobile microplates for precise neural network assembly," Proc. in MicroTAS , pp. 1749-1751, 2011.
[36] J. M. Shaw and M. Hatzakis, "Performance characteristics of diazo-type photoresists under e-beam and optical exposure," Electron Devices, IEEE Transactions on, vol. 25, pp. 425-430, 1978.
[37] ZEISS, "Fundamentals of Mercury Arc Lamps," Education in Microscopy and Digital Imaging.
[38] W. M. Moreau, "Semiconductor Lithography - Principles, Practices and Materials","Plenum Press, 1988.
[39] T. R. Ger, C. Y. Huang, C. W. Chiang, P. W. Fu, K. S. Hu, Y. H. Peng, et al., "Cell Patterning Using Magnetic Concentric Rectangular Thin Films for Biochip Application," IEEE Transactions on Magnetics, vol. 49, pp. 3496-3499, 2013.