研究生: |
廖宥甯 Liao, Yu-Ning |
---|---|
論文名稱: |
應用於超臨界水循環系統之耐高溫參考電極的研發 Development of High Temperature Reference Electrodes for Potentiometric study in SCW Environments |
指導教授: |
葉宗洸
Yeh, Tsung-Kuang |
口試委員: |
葉宗洸
王立華 歐陽汎怡 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 超臨界水 、腐蝕電位 、參考電極 |
相關次數: | 點閱:47 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了進行超臨界狀態下金屬材料的電化學行為分析並獲取相關的電化學參數,除了建立一套適用於溫度374 °C以上與壓力22.1 MPa以上的模擬超臨界水循環系統外,穩定且耐用的參考電極是不可或缺的。本論文主要研究目的在於發展高溫專用的Ag/AgCl參考電極以及Zr/ZrO2所製成的參考電極,並將其應用於超臨界水環境中,進行304L不鏽鋼電化學腐蝕電位(ECP)之量測,觀察其ECP在純水中隨溫度變化之情形。
測試結果發現在常溫下,氧化鋯管所製作成的Ag/AgCl參考電極經過72小時靜置時間後與商用Ag/AgCl參考電極同在飽和KCl溶液中的電位值差異皆小於10 mV以內,證明此高溫專用的Ag/AgCl參考電極在常溫環境下是可正常操作。並將氧化鋯管所製作成的Ag/AgCl參考電極應用於高溫288 °C、高壓7.8 MPa和溶氧濃度300 ppb之模擬沸水式反應器水環境下,與過去研究所製作的熱縮套管Ag/AgCl參考電極數據來互相比較,發現在相同條件下不同參考電極所測得的ECP值相近,並且氧化鋯管所製作成的Ag/AgCl參考電極量測出的ECP值可在短時間內達到平衡。後續也進行25 MPa及不同溫度下的304L試片ECP量測,可以發現ECP值在溫度由200℃、250℃升至300℃時,上升並不明顯,但在350℃時就會明顯上升。最後將Ag/AgCl參考電極以及Zr/ZrO2參考電極置於模擬超臨界水環境進行測試,分別在385℃和400℃之溫度進行量測,和350℃所測得之ECP相比,可以發現溫度及水進入超臨界狀態時因其物理性質改變所造成之阻抗上升為兩個影響ECP量測之重要因素。未來將利用此兩種參考電極進行不同的試片以及不同水化學環境的腐蝕電位測試。
[1] http://www.grida.no/climate/ipcc_tar/slides/index.htm
[2] 謝得志, ”核能溝通”, 於清華大學演講, (4/3/2009)
[3] Supercritical Water Reactor (SCWR) Survey of Materials Experience and R&D Needs to Assess Viability, INEEL/EXT-03-00693 Revision 1, September 2003.
[4] BUONGIORNO, J., W. Corwin, P. MacDonald, L. Mansur, R. Nanstad, R. Swindeman, A.Rowcliffe, G. Was, D. Wilson, I. Wright, Supercritical Water Reactor (SCWR), Survey of Materials Experience and R&D Needs to Assess Viability, INEEL/EXT-03-00693 (Rev. 1), Idaho National Engineering and Environmental Laboratory, September 2003(a).
[5] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, “Corrosion and stress corrosion cracking in supercritical water”, Journal of Nuclear Materials 371(2007) 176-201.
[6] P. Kritzer, “Corrosion in high-temperature and supercritical water and aqueous solutions: influence of solution and material parameters”, SCR-2000, Nov. 6-8, 2000, Tokyo, Japan.
[7] K. Johnston, C. Haynes, Am. Inst. Chem. Eng. J. 33 (1987)2017
[8] K. Ishida, et al, ”DEVELOPMENT OF REFERENCE ELECTRODE USING ZIRCONIUM AS ELECTRODE POLE TO MEASURE ELECTROCHEMICAL CORROSION POTENTIAL IN HIGH TEMPERATURE PURE WATER” 8th Int'l Radiolysis, Electrochemistry & Materials Performance Workshop, October 8, 2010.
[9] M. Navas, M.D. Gomez Briceno, “Behaviour of reference electrodes in the monitoring of corrosion potential at high temperature, Nuclear Engineering and Design 168 (1997) 183-189.
[10] C. C. Lin, et al,”Electrochemical Potential Measurements Under Simulated BWR Water Chemistry” EPRI NP-6732, March 1990.
[11] L. W. Niedrach and W. H. Stoddard, (a) “Monitoring pH and Corrosion Potentials in High Temperature Aqueous Environments”, Corrosion 41, 45 (1985); (b)”Corrosion Potentials and Corrosion Behavior of AISI 304 Stainless Steel in High-Temperature Water Containing Both Dissolved Hydrogen and Oxygen”, Corrosion-NACE, 42, 696 (1986).
[12] R. S. Greeley, etal., “Electromotive Force Studies in Aqueous Solutions at Elevated Temperatures, I. The Standard Potential of the Silver-Silver Chloride Electrode”, J. Phys. Chem., 64, 652 (1960).
[13] J. Leibovitz, W. K. Kassen, W. L. Pearl and S. G. Sawochka, “In-Plant Measurements of Electrochemical Potentials in BWR Water”, EPRI NP-3521 (May 1984).
[14] L. W. Neidrach, Use of a high temperature pH sensor as a ‘pseudo-reference electrode’ in the monitoring of corrosion and redox potentials at 285℃, J. Electrochem. Soc. 129 (1982) 1446.
[15] D. D. Macdonald, S. Hettiarachchi and S. J. Lenhart, The Thermodynamic Viability of YSZ pH Sensors for High Temperature Aqueous Solutions, EPRI NP-6005 (1990).
[16] M. E. Indig and A. R. McIlree, “High Temperature Electrochemical Studies of the Stress Corrosion of Type 304 Stainless Steel”, Corrosion, 35, 7, 288 (1979).
[17] M. E. Indig and J. E. Weber, “Electrochemical Potential Measurements in a Boiling Water Reactor”, EPRI NP-3362(Nov. 1983).
[18] M. Hishida, et al., “Electrochemical Approach to Stress Corrosion Cracking in BWR Pipes”, Toshiba Review No. 151, p.13 Spring 1985.
[19] S. N. Lvov, H. Gao and D. D. Macdonald, “Advanced Flow-through Pressure-balanced Reference Electrode for Potentiometric and pH studies in High Temperature Aqueous Solutions,” Journal of Electroanalytical Chemistry, v. 44, p.186-194 (1998).
[20] Y. Wada et al., J. Nuc. Sci. and Technol., 44, p.1448 (2007)
[21] Y. J. Kim et al., Corros., 61, p.889 (2005)
[22] D. D. Macdonald, "Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors," Corrosion 48(1992) 194-205.
[23] Herbert H. Uhlig & R. Winston Revie , Corrosion and Corrosion Control, Chapter 7.
[24] Thornton, R.D., Morash, K.R., Light, T.S., Saunders, C.H., and Bevilacqua, A.C., “Measurement of the Resistivity of High-Purity Water at Elevated Temperatures,” Ultrapure Water, Vol. 11, No. 9, December 1994, pp. 18–24.