研究生: |
蕭恆昇 Hsiao, Heng-Sheng |
---|---|
論文名稱: |
磁阻感測器於絕對式裝置上的開發與特性分析 Development and Analysis of Magnetoresistive Sensor on Absolute Type Position Device |
指導教授: |
張禎元
Chang, Jen-Yuan |
口試委員: |
宋震國
曹哲之 詹子奇 林巧奇 陳燦林 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 153 |
中文關鍵詞: | 絕對位置 、磁阻感測器 、回授裝置 、磁場分析 |
外文關鍵詞: | Absolute position, Magnetoresistive sensor, Feedback device, Magnetic field analysis |
相關次數: | 點閱:126 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
回授裝置為運動控制中重要的元件之一,而市面上位置回授裝置種類繁多,各自的性能表現與適用性也不盡相同。尤近年來自動化與產業機械的蓬勃發展,對於運動控制的需求增加外,對定位精準度與極限速度的要求日漸嚴苛。
簡單來說回授裝置是由感測頭與資料記錄媒體所構成。在本論文中,資料記錄媒體根據編碼原則,並基於磁學理論,提出適用於線性裝置的絕對編碼。透過數學模型的建立,分析資料記錄媒體的磁場空間分布,以及磁阻感測器於變化磁場中的訊號響應特性,開發出一種具有絕對式位置回授的磁性裝置。透過實驗的方法測試本論文所開發的絕對式回授裝置,得到定位精度、重現度、最大速度等特性,此些特性可以勝任一般自動化產業的應用。磁紀錄媒體的磁場分布與定位精度之間的模型建立,有助於縮短品質檢驗所需要的時間。感測器於磁場分布中的姿態對於輸出訊號以及定位精度的影響,也在本文中進行分析探討。
本文透過絕對編碼的建立與分析磁阻感測器於不同磁場分布下的特性,提出具有高精度與高解析度並克服原點賦歸的位置回授裝置,且可安裝於嚴苛的環境下使用,未來有機會應用於加工機台上。
Feedback device is one of the most important components of motion control. There are various types of feedback devices available on the market. However, the properties of feedback devices are different with each other and adaptive to diverse applications.
Generally, feedback device consists of a read head and recording media. In this dissertation, the encoding method on recording media was proposed to apply on linear system based on magnetism. An analytical model was presented to calculate magnetic field distribution and corresponding response of MR sensor. An absolute position sensing system was carried out and tested for its accuracy, repeatability and maximum traveling speed, which are able to fulfill the requirement in automation industry application. In order to reduce the time costing in quality examination process, an analytical model was established to retrieve accuracy directly from magnetic field distribution. The assembled attitude of sensor in magnetic field was investigated into its corresponding output signal and accuracy.
An absolute position sensing system was proposed through presented encoding method and analysis of sensor characteristics under various magnetic field, which could achieve high accuracy and resolution.
1. Zhang, P., Advanced Industrial Control Technology. 2010, Oxford: William Andrew Publishing. 842.
2. Heidenhain, Influence of Position Measurement on Accuracy in 5-Axis Machining. 2011, Dr. Johannes Heidenhain GmbH. p. 12.
3. Statista, Leading countries for machine tool exports in 2015 and 2016. 2017, Statista Inc.
4. PMC Taiwanese industrial report of technology development in mechanical engineering. 2013.
5. Heidenhain. Heidenhain Products: Linear Encoders. 2019; Available from: https://www.heidenhain.de/de_EN/products/linear-encoders/.
6. Attaianese, C. and G. Tomasso, Position Measurement in Industrial Drives by Means of Low-Cost Resolver-to-Digital Converter. IEEE Transactions on Instrumentation and Measurement, 2007. 56(6): p. 2155-2159.
7. Aung, N.L.H., et al., A Demodulation Technique for Spindle Rotor Position Detection With Resolver. IEEE Transactions on Magnetics, 2013. 49(6): p. 2614-2619.
8. Benammar, M., A novel amplitude-to-phase converter for sine/cosine position transducers. International Journal of Electronics, 2007. 94(4): p. 353-365.
9. Renishaw. Renishaw Products: Optical encoders. 2019; Available from: https://www.renishaw.com/en/optical-encoders--6433.
10. Heidenhain, Exposed Linear Encoder. 2019, Dr. Johannes Heidenhain GmbH.
11. Ikeda, M. and H. Kaku, MR Sensor for Magnetic Encoder. IEEE Translation Journal on Magnetics in Japan, 1992. 7(9): p. 705-713.
12. Dimitrova, P., S. Andreev, and L. Popova, Thin film integrated AMR sensor for linear position measurements. Sensors and Actuators A: Physical, 2008. 147(2): p. 387-390.
13. Ripka, P. and M. Janosek, Advances in Magnetic Field Sensors. IEEE Sensors Journal, 2010. 10(6): p. 1108-1116.
14. Tang, Q., et al., An Inductive Angular Displacement Sensor Based on Planar Coil and Contrate Rotor. IEEE Sensors Journal, 2015. 15(7): p. 3947-3954.
15. Zheng, D., et al., A Capacitive Rotary Encoder Based on Quadrature Modulation and Demodulation. IEEE Transactions on Instrumentation and Measurement, 2015. 64(1): p. 143-153.
16. Mayer, J.R.R., High-resolution of rotary encoder analog quadrature signals. IEEE Transactions on Instrumentation and Measurement, 1994. 43(3): p. 494-498.
17. Jogschies, L., et al., Recent Developments of Magnetoresistive Sensors for Industrial Applications. Sensors (Basel, Switzerland), 2015. 15(11): p. 28665-28689.
18. Golby, J., Advances in inductive position sensor technology. Sensor Review, 2010. 30(2): p. 142-147.
19. POSIC. Posic products: Miniture inductive encoder kits. 2019; Available from: https://www.posic.com/EN/.
20. Zhang, Z., et al., A Novel Absolute Magnetic Rotary Sensor. IEEE Transactions on Industrial Electronics, 2015. 62(7): p. 4408-4419.
21. Baxter, L.K., Capacitive Sensor Basics, in Capacitive Sensors: Design and Applications. 1997, IEEE. p. 1.
22. Netzer, Y., Capacitive Displacement Encoder. 2002, Netzer Motion Sensors Ltd.
23. Renishaw. Interferometric laser encoders. 2019.
24. Zhang, F., et al., Absolute Position Coding Method for Angular Sensor-Single-Track Gray Codes. Sensors (Basel, Switzerland), 2018. 18(8): p. 2728.
25. Ye, G., et al., Development of a digital interpolation module for high-resolution sinusoidal encoders. Sensors and Actuators A: Physical, 2019. 285: p. 501-510.
26. Hao, S., Y. Liu, and M. Hao. Study on a novel absolute magnetic encoder. in Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on. 2009.
27. Xu, Z.-H., et al., Optimization of Magnetizing Parameters for Multipole Magnetic Scales Using the Taguchi Method. IEEE Transactions on Magnetics, 2015. 51(11): p. 1-4.
28. Kikuchi, Y., et al., Consideration of magnetization and detection on magnetic rotary encoder using finite element method. IEEE Transactions on Magnetics, 1997. 33(2): p. 2159-2162.
29. Tan, B., et al., Demonstration of a magnetic angular position sensor with ultra-high resolution and accuracy. Sensors and Actuators A: Physical, 2000. 81(1): p. 332-335.
30. Campbell, P., Magnetoresistive sensors for rotary position encoders. IEEE Transactions on Magnetics, 1990. 26(5): p. 2029-2031.
31. Gu, Z., The Coding Method of “HUI WEN” Code Used in Absolute Optical Encoders. 1993: China.
32. Spedding, N.B., A Position Encoder. 1994.
33. Hiltgen, A., K.G. Paterson, and M. Brandestini, Single-track Gray codes. IEEE Transactions on Information Theory, 1996. 42(5): p. 1555-1561.
34. Schwartz, M. and T. Etzion, The structure of single-track Gray codes. IEEE Transactions on Information Theory, 1999. 45(7): p. 2383-2396.
35. Agrawal, A. and J. Thornton, Method for Estimating Positions Using Absolute Encoders. 2013, Mitsubishi Electric Research Laboratories
36. Mitchell, C.J., T. Etzion, and K.G. Paterson, A method for constructing decodable de Bruijn sequences. IEEE Transactions on Information Theory, 1996. 42(5): p. 1472-1478.
37. Bruckstein, A.M., et al., Simple and Robust Binary Self-Location Patterns. IEEE Transactions on Information Theory, 2012. 58(7): p. 4884-4889.
38. Das, S. and B. Chakraborty, Design of an Absolute Shaft Encoder Using Optically Modulated Binary Code. IEEE Sensors Journal, 2018. 18(12): p. 4902-4910.
39. Petriu, E., Absolute-type pseudorandom shaft encoder with any desired resolution. Electronics Letters, 1985. 21(5): p. 215-216.
40. Denić, D., I. Randelovic, and G. Miljkovic. Recent Trends of Linear and Angular Pseudorandom Encoder Development. in International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. 2006.
41. Rančić, D.D.I.R.M., High-Resolution Pseudorandom Encoder with Parallel Code Reading Elektronika ir Elektrotechnika, 2004. 7(56): p. 14-18.
42. Denic, D. and I. Stojkovic, Pseudorandom/natural code converter with parallel feedback logic configuration. Electronics Letters, 2010. 46(13): p. 921-922.
43. Heydemann, P.L.M., Determination and correction of quadrature fringe measurement errors in interferometers. Applied Optics, 1981. 20(19): p. 3382-3384.
44. Birch, K.P., Optical fringe subdivision with nanometric accuracy. Precision Engineering, 1990. 12(4): p. 195-198.
45. Wu, Z. and Y. Li, High-Accuracy Automatic Calibration of Resolver Signals via Two-Step Gradient Estimators. IEEE Sensors Journal, 2018. 18(7): p. 2883-2891.
46. Balemi, S., AUTOMATIC CALIBRATION OF SINUSOIDAL ENCODER SIGNALS. IFAC Proceedings Volumes, 2005. 38(1): p. 68-73.
47. Hoang, H.V. and J.W. Jeon. Signal compensation and extraction of high resolution position for sinusoidal magnetic encoders. in 2007 International Conference on Control, Automation and Systems. 2007.
48. Hoseinnezhad, R., A. Bab-Hadiashar, and P. Harding, Calibration of Resolver Sensors in Electromechanical Braking Systems: A Modified Recursive Weighted Least-Squares Approach. IEEE Transactions on Industrial Electronics, 2007. 54(2): p. 1052-1060.
49. Lara, J. and A. Chandra. Position error compensation in quadrature analog magnetic encoders through an iterative optimization algorithm. in IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. 2014.
50. Hwang, S.-H., et al., Compensation of Amplitude Imbalance and Imperfect Quadrature in Resolver Signals for PMSM Drives. IEEE Transactions on Industry Applications, 2011. 47(1): p. 134-143.
51. Qamar, N.A., C.J. Hatziadoniu, and H. Wang, Speed error mitigation for a DSP-based resolver-to-digital converter using autotuning filters. IEEE Transactions on Industrial Electronics, 2015. 62(2): p. 1134-1139.
52. Qasim, M., P. Kanjiya, and V. Khadkikar, Artificial-Neural-Network-Based Phase-Locking Scheme for Active Power Filters. IEEE Transactions on Industrial Electronics, 2014. 61(8): p. 3857-3866.
53. Golestan, S., J.M. Guerrero, and J.C. Vasquez, Hybrid Adaptive/Nonadaptive Delayed Signal Cancellation-Based Phase-Locked Loop. IEEE Transactions on Industrial Electronics, 2017. 64(1): p. 470-479.
54. Tran, T.N.-C., et al., Improving the Accuracy of an Absolute Magnetic Encoder by Using Harmonic Rejection and a Dual-Phase-Locked Loop. IEEE Transactions on Industrial Electronics, 2019. 66(7): p. 5476-5486.
55. Hagiwara, N., Y. Suzuki, and H. Murase, A method of improving the resolution and accuracy of rotary encoders using a code compensation technique. IEEE Transactions on Instrumentation and Measurement, 1992. 41(1): p. 98-101.
56. Kiriyama, T. and M. Teraguchi, Interpolation circuit for encoder having a look-up table memory with reduced capacity. 1999, Mitutoyo Corporation, Kawasaki, Japan.
57. Tan, K.K., H.X. Zhou, and T.H. Lee, New interpolation method for quadrature encoder signals. IEEE Transactions on Instrumentation and Measurement, 2002. 51(5): p. 1073-1079.
58. Tan, K.K. and K.-Z. Tang, Adaptive online correction and interpolation of quadrature encoder signals using radial basis functions. IEEE Transactions on Control Systems Technology, 2005. 13(3): p. 370-377.
59. Bunte, A. and S. Beineke, High-performance speed measurement by suppression of systematic resolver and encoder errors. IEEE Transactions on Industrial Electronics, 2004. 51(1): p. 49-53.
60. Emura, T. and L. Wang, A high-resolution interpolator for incremental encoders based on the quadrature PLL method. IEEE Transactions on Industrial Electronics, 2000. 47(1): p. 84-90.
61. Bellini, A. and S. Bifaretti, A digital filter for speed noise reduction in drives using an electromagnetic resolver. Mathematics and Computers in Simulation, 2006. 71(4): p. 476-486.
62. Idkhajine, L., et al., Fully Integrated FPGA-Based Controller for Synchronous Motor Drive. IEEE Transactions on Industrial Electronics, 2009. 56(10): p. 4006-4017.
63. Hoang, H.V. and J.W. Jeon, An Efficient Approach to Correct the Signals and Generate High-Resolution Quadrature Pulses for Magnetic Encoders. IEEE Transactions on Industrial Electronics, 2011. 58(8): p. 3634-3646.
64. Bergas-Jané, J., et al., High-Accuracy All-Digital Resolver-to-Digital Conversion. IEEE Transactions on Industrial Electronics, 2012. 59(1): p. 326-333.
65. Caruso, M., et al., A DSP-Based Resolver-To-Digital Converter for High-Performance Electrical Drive Applications. IEEE Transactions on Industrial Electronics, 2016. 63(7): p. 4042-4051.
66. Benammar, M. and A.S.P. Gonzales, Position Measurement Using Sinusoidal Encoders and All-Analog PLL Converter With Improved Dynamic Performance. IEEE Transactions on Industrial Electronics, 2016. 63(4): p. 2414-2423.
67. Cheung, N.C. An innovative method to increase the resolution of optical encoders in motion servo systems. in Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475). 1999.
68. Možina, T.P.P.G.J., A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer. Applied Physics B, 2011. 105(3): p. 575–582.
69. Jourlin, Y., J. Jay, and O. Parriaux, Compact diffractive interferometric displacement sensor in reflection. Precision Engineering, 2002. 26(1): p. 1-6.
70. Kim, J.-A., et al., An optical absolute position measurement method using a phase-encoded single track binary code. Review of Scientific Instruments, 2012. 83(11): p. 115115.
71. Qin, J., C.E. Stroud, and F.F. Dai, FPGA-Based Analog Functional Measurements for Adaptive Control in Mixed-Signal Systems. IEEE Transactions on Industrial Electronics, 2007. 54(4): p. 1885-1897.
72. Yan, L., et al., Signal processing method of a laser synthetic wavelength interferometer. Measurement Science and Technology, 2009. 21(1): p. 015106.
73. Peng, K., et al., Sensing Mechanism and Error Analysis of a Capacitive Long-Range Displacement Nanometer Sensor Based on Time Grating. IEEE Sensors Journal, 2017. 17(6): p. 1596-1607.
74. Ben-Brahim, L., M. Benammar, and M.A. Alhamadi, A Resolver Angle Estimator Based on Its Excitation Signal. IEEE Transactions on Industrial Electronics, 2009. 56(2): p. 574-580.
75. Ye, G., et al., Precise and robust position estimation for optical incremental encoders using a linearization technique. Sensors and Actuators A: Physical, 2015. 232: p. 30-38.
76. Ulu, E., N.G. Ulu, and M. Cakmakci, Development and Validation of an Adaptive Method to Generate High-Resolution Quadrature Encoder Signals. Journal of Dynamic Systems, Measurement, and Control, 2014. 136(3): p. 034503-034503-7.
77. Sanchez-Brea, L.M. and T. Morlanes, Metrological errors in optical encoders. Measurement Science and Technology, 2008. 19(11): p. 115104.
78. Schödlbauer, D., Method and apparatus for determining absolute position of displacement and angle sensors. 2002, Ruf Electronics, GmbH.
79. Yin-Jao, L., E.T. Hwang, and S.M. Huang. Multi-pole magnetization of high resolution magnetic encoder. in Electrical Electronics Insulation Conference and Electrical Manufacturing & Coil Winding Conference, 1993. Proceedings., Chicago '93 EEIC/ICWA Exposition. 1993.
80. Inokuchi, K.I.T.K.K., Magnetic encoder, wheel bearing and method of manufacturing magnetic encoder. 2003, NTN Corp.
81. Rieger, G., et al., GMR sensors for contactless position detection. Sensors and Actuators A: Physical, 2001. 91(1): p. 7-11.
82. Adelerhof, D.J. and W. Geven, New position detectors based on AMR sensors. Sensors and Actuators A: Physical, 2000. 85(1): p. 48-53.
83. Tumanski, S., Thin Film Magnetoresistive Sensors. 2001: CRC Press
84. Tumanski, S., Handbook of Magnetic Measurements. 1st ed. 2011 CRC Press
85. AREPOC, Catalogue of Hall probes. 2014, AREPOC s.r.o.
86. Tsai, H.-W., Research of Magnetic Encoder System Integration, in Department of Power Mechanical Engineering. 2015, National Tsing Hua University: Taiwan. p. 65.
87. Chen, C.-Y., Magnetization and Accuracy Analysis of Magnetic Recording Medium, in Department of Power Mechanical Engineering. 2015, National Tsing Hua University: Taiwan. p. 68.
88. Chou, T.-L., Error Analysis of Accuracy and Magnetizing Base on Magnetic Encoder, in Department of Power Mechanical Engineering. 2018, National Tsing Hua University: Taiwan. p. 70.