簡易檢索 / 詳目顯示

研究生: 陳彥勳
Chen, Yan-Syun
論文名稱: 矽晶太陽能電池之鈣鈦礦應用於電洞選擇層
Study of Monocrystalline Silicon Solar Cells With Perovskite Hole Selective Contacts
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 孟心飛
Meng, Hsin-Fei
余沛慈
Yu, Pei-Chen
趙宇強
Chao, Yu-Chiang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 54
中文關鍵詞: 鈣鈦礦矽晶太陽能電池
外文關鍵詞: Perovskite, Silicon solar cell
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今太陽能電池主要是由三層結構所構成,中間層多為單晶矽當作吸收層,再來會在正反面長一層Amorphous silicon當作鈍化層,增加載子飄移長度,最後分別在正反面再長一層高參雜P/N Silicon當作電子電洞選擇層,有了這層可以使載子減少複合機率。
    近年受到高度關注的鈣鈦礦太陽能電池,其材料是由AX+BX_2=ABX_3所組成,特性擁有極佳的吸光效率以及載子飄移長度。而研究發現透過AX/BX_2的不同比例(缺陷,自參雜)、退火溫度可任意改質鈣鈦礦形成P、I、N type。我們希望透過這樣的特性,讓鈣鈦礦拿來當作電子電洞選擇層,其相較於利用矽的高參雜,擁有低溫低成本的優勢,且分別替換A、B、X亦可調配功函數,擁有很大的可調性,在未來太陽能電池的應用上有很大潛能。
    而本實驗首先透過蝕刻的粗糙度及原生氧化層的親水性的特性克服鈣鈦礦在矽基板上成的問題,但考量到蝕刻會增加表面缺陷以及原生氧化層難以精準控制,最後我們採用蒸鍍MoO_3的方式當作基底。而雖然克服了鈣鈦礦成膜的問題,但鈣鈦礦(MAPbI_3)中內含(I)無法像其他有機材料可以直接與銀電極接觸,我們一樣用MoO_3當作中間層隔絕,由此建立我們的元件架構。
    首先我們例用鈣鈦礦自參雜的特性,調配Ratio(PbI_2/MAI) =1、0.9、0.8,溶劑為DMF調配30w%的溶液。從電性方面發現,在Ratio(PbI_2/MAI) =0.8時F.F從62.07%提升至73.64%獲得大幅改善使元件光電轉換效率最高可達到11.23%。而利用AgI doping的方式改質鈣鈦礦,在濃度為AgI 1w%。從SEM下可以看到結晶顆粒變大使得缺陷減少,Jsc提升1mA,且F.F大幅改善10%使元件效率從9.44提升到11.42%。


    Today's solar cells are mainly composed of a three-layer structure. The middle layer is mostly a single crystal germanium as an absorption layer, and then a layer of Amorphous silicon is used as a passivation layer on the front and back sides to increase the carrier drift length, and finally on the front and back sides respectively. A layer of high-doping P/N Silicon is used as the electron hole selection layer. This layer can reduce the carrier's probability of compounding.
    In recent years, the perovskite solar cells, which are highly concerned, are composed of AX+BX_2=ABX_3, which has excellent light absorption efficiency and carrier drift length. The study found that through the different proportions of AX/ BX_2 (defects, self-doping), annealing temperature can be modified to form P, I, N type. We hope that through this kind of characteristics, perovskite can be used as an electron hole selection layer. Compared with the high impurity of using strontium, it has the advantages of low temperature and low cost, and can be replaced by replacing A, B and X respectively. The work function has great adjustability and has great potential in the future application of solar cells.
    In this experiment, the problem of perovskite on the ruthenium substrate is overcome by the roughness of the etch and the hydrophilicity of the native oxide layer. However, it is considered that the etching will increase the surface defects and the primary oxide layer is difficult to control accurately. Finally, we use steaming. The method of plating MoO_3 is used as a substrate. Although the problem of perovskite film formation is overcome, the inclusion of I in perovskite (MAPbI_3) cannot be directly contacted with the silver electrode like other organic materials, and we use MoO_3 as the intermediate layer to isolate it. Our component architecture.
    First, we used the characteristics of perovskite self-doping, and formulated Ratio (PbI_2/MAI) = 1, 0.9, 0.8, and the solvent was DMF to prepare 30w% solution. From the electrical point of view, F F increased from 62.07% to 73.64% when Ratio (PbI_2/MAI) = 0.8, which greatly improved the photoelectric conversion efficiency of the component up to 11.23%. The AgI doping method was used to modify the perovskite at a concentration of AgI 1w%. It can be seen from the SEM that the crystal particles become large to reduce defects, Jsc is increased by 1 mA, and F.F is greatly improved by 10% to increase the element efficiency from 9.44% to 11.42%.

    目錄 摘要 i Abstract iii 圖目錄 ix 表目錄 xii 第一章、緒論及研究動機 1 1.1 矽晶太陽能電池發展 3 1.2 載子選擇層(Carrier Selective Layer, CSL) 6 1.2.1 有機載子選擇層 6 1.2.2 鈣鈦礦太陽能電池簡介 7 第二章、太陽能電池原理與量測分析技術 11 2.1 太陽能電池基本架構 11 2.1.1 太陽能模組介紹 11 2.1.2太陽能光電轉換原理 13 2.1.3 太陽能電池常用參數定義 15 2.2 太陽能電池量測與分析技術 18 2.2.1 元件電流-電壓特性量測系統 18 2.2.2 少數載子壽命測試儀(Sinton WCT-120) 19 2.2.3 掃描式電子顯微鏡(Scanning Electron Microscopy) 21 2.2.4 紫外光/可見光/近紅外光光譜儀(Hitachi U4100) 22 第三章、鈣鈦礦-電洞選擇層材料製備與分析 23 3.1矽基板蝕刻技術 23 3.1.1矽晶體蝕刻原理 23 3.1.2矽基板表面清潔處理 24 3.2鈣鈦礦與矽基板介面成膜探討 25 3.2.1矽基表面粗糙度與成膜條件關係 25 3.2.2矽基表面親水性與成膜條件關係 32 3.3 調配鈣鈦礦Precursor比例改質分析 34 第四章、鈣鈦礦用於電洞選擇層量測分析 37 4.1. 元件製備流程 37 4.2 鈣鈦礦與電極直接接觸影響及anti-solvent成膜比較 38 4.3 利用MoO3隔絕鈣鈦礦直接與銀電極接觸 40 4.4 水氧環境與濃度對鈣鈦礦影響 42 4.5 鈣鈦礦自參雜改質元件效率 45 4.6 鈣鈦礦參雜AgI改質元件效率 48 第五章、總結與未來展望 50 參考文獻 52

    [1]. REN21, Perspectives on the global renewable energy transition(2019)
    [2]. S. Gatz et al., "19.4%-efficient large-area fully screen-printed silicon solar cells," physica status solidi (RRL) - Rapid Research Letters, vol. 5, no. 4, pp. 147-149, 2011.
    [3] Hernandez, J. L. et al. High efficiency silver-free heterojunction silicon solar cell. Jpn. J. Appl. Phys. 51, 10NB04 (2012).
    [4] Hernandez, J. L. High efficiency copper electroplated heterojunction solar cells.In Proc. 27th EUPVSEC 655656 (WIP, 2012).
    [5] Adachi, D., Hernandez, J. L. & Yamamoto, K. Impact of carrier recombination on fill factor for large area heterojunction crystalline Si solar cell with 25.1% e ciency. Appl. Phys. Lett. 107, 233506 (2015).
    [6] Green, M. A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. Res. Appl. 17, 183189 (2009).
    [7]. Masuko, K. et al. Achievement of more than 25% conversion e_ciency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4,1433_1435 (2014).
    [8]. KANEKA, Silicon heterojunction solar cell with interdigitated
    back contacts for a photoconversion efficiency
    over 26% (2017)
    [9]. D. Zielke, C. Niehaves, W. Lövenich, A. Elschner, M. Hörteis, and J. Schmidt, "Organic-silicon Solar Cells Exceeding 20% Efficiency," Energy Procedia, vol. 77, pp. 331-339, 2015.
    [10]. D. Zielke, A. Pazidis, F. Werner, and J. Schmidt, "Organic-silicon heterojunction solar cells on n-type silicon wafers: The BackPEDOT concept," Solar Energy Materials and Solar Cells, vol. 131, pp. 110-116, 2014.
    [11] Yang Yang REVIEW Under the spotlight: The organic—inorganichybrid halide perovskite for optoelectronicapplications(2015)
    [12] H.J. Snaith, J. Phys. Chem. Lett. 21 (2013) 3623—3630.
    [13] N.-G. Park, Mater. Today 18 (2015) 65—72.
    [14] Kunta Yoshikawa,Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%(2017)
    [15] Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) (2019)
    [16] Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency.2016
    [17] Henry J. Snaith,Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites(2012)
    [18] Wan-Jian Yin, Tingting Shi, and Yanfa Yan,Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber(2013)
    [19] Samsung Advanced Institute of Technology, Samsung Electronics Co,The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite
    [20] Meicheng Li,Planar p–n homojunction perovskite solar cellswith efficiency exceeding 21.3%(2017)
    [21] Eric Wei-Guang Diau, Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p‑Type Character[2017]
    [22] samlexsolar www.samlexsolar.com/learning-center/solar-cell-module-array.aspx
    [23] electricalengineering123, https://www.electricalengineering123.com/solar-cell-construction-working-principle/
    [24] wiki, https://en.wikipedia.org/wiki/P%E2%80%93n_junction
    [25] Wikimedia, https://en.wikipedia.org/wiki/Theory_of_solar_cells
    [26] pveducation,https://www.pveducation.org/index.php
    [27] Professor Fabiano Fruett, Propriedades mecânicas do silício

    QR CODE