簡易檢索 / 詳目顯示

研究生: 王文琦
Wang, Wen-Chi
論文名稱: Dynamic Skylines Considering Range Queries
考慮範圍查詢下的天際線
指導教授: 陳良弼
Chen, Arbee L.P.
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 30
中文關鍵詞: 天際線範圍查詢格網索引Z曲線動態
外文關鍵詞: skyline, range queries, grid index, Z-order curve
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Dynamic skyline queries are practical in many applications. For example, in an information system, if no data exist to fully satisfy a query q, the data “closer” to the requirements of q can be retrieved as the answers. Finding the nearest neighbors of q can be a solution; yet finding the data not dynamically dominated by any other data with respect to q, i.e. the dynamic skylines regarding q can be another solution. A data point p is defined to dynamically dominate the other data point s, if the distance between each dimension of p and the corresponding dimension of q is no larger than the corresponding distance regarding s and q, and moreover, at least in one dimension, the corresponding distance regarding p and q is smaller than that regarding s and q. Some approaches for answering dynamic skyline queries have been proposed in recent years. However, the existing approaches only consider the query as a point rather than a range in each dimension, which can also be frequently issued by users. We therefore make the first attempt to solve the problem of computing dynamic skylines considering range queries in this paper. To deal with this problem, we propose an efficient algorithm based on the grid index and a novel variation of the well-known Z-order curve. Moreover, a series of experiments are performed to evaluate the proposed algorithm and the experiment results demonstrate that it is effective and efficient.


    在很多應用中都有用到動態天際線的查詢,列如,在一個資訊系統中,如果沒有任何資料符合查詢,那麼接近其他查詢的資料就會被當成答案回報給使用者;與查詢鄰近的那些資料可以當作答案回傳給使用者,但是找到那些針對於查詢而言沒有被動態支配的那些資料也可以當作答案回傳給使者。動態支配的意思是,我們說一個資料點p動態支配另一個資料點s,那麼p在所有維度中距離使用者下的查詢都不會大於s到使用者下的查詢的距離,更甚的是,至少有一個維度p到查詢的距離為小於s到查詢的距離。近年來有些有解決動態天際線的方法被提出來,然而,現存的方法都考慮查詢是一個精確值,而非是一個範圍,因此我們是第一個研究如何在範圍查詢之下解決動態天際線的計算,我們提出了一個和有效率的演算法,演算法是建構在格網索引和一個Z曲線的變型。最後實驗部分展示出了我們方法的效率。

    Acknowledgement…………………………………………………………i Abstract…………………………………………………………………ii Table of Contents……………………………………………………iii List of Figure…………………………………………………………iv 1 Introduction……………………………………………………………1 2 Related Works………………………………………………………6 3 Preliminaries………………………………………………………8 3.1 Problem Formulation……………………………………………8 3.2 Data Structures used in Our Solution ……………………9 3.2.1 The Grid Index………………………………………………10 3.2.2 Z-order curve………………………………………………11 3.2.3 Multidirectional Z-order curves………………………13 4 Dynamic Skyline Processing……………………………………16 4.1 Principle of Pruning Strategies…………………………16 4.2 The MDS Algorithm……………………………………………20 5 Performance Evaluation…………………………………………24 5.1 Experiment Setup………………………………………………24 5.2 Experiment Results……………………………………………25 6 Conclusions……………………………………………………… 28 References………………………………………………………………29

    [BKS01] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In Proceedings of the 17th International Conference on Data Engineering, ICDE2001, Heidelberg, Germany, pp. 421-430.
    [BCP06] I. Bartolini, P. Ciaccia, and M. Patella. SaLSa: Computing the skyline without scanning the whole sky. In Proceedings of the 2006 ACM International Conference on Information and Knowledge Management, CIKM2006, Arlington, Virginia, USA, pp. 405-414.
    [CGG03] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In Proceedings of the 19th International Conference on Data Engineering, ICDE2003, Bangalore, India, pp. 717-719.
    [CL09] L. Chen and X. Lian. Efficient processing of metric skyline queries. IEEE Trans. Knowl. Data Eng. 21, 3 (Mar. 2009) pp. 351-365.
    [DS07] E. Dellis and B. Seeger. Efficient Computation of Reverse Skyline Queries. In Proceedings of the 33nd International Conference on Very Large Data Bases, VLDB2007, Vienna, Austria, pp. 291-302.
    [DZS07] K. Deng, X. Zhou, and H. T. Shen. Multi-source skyline query processing in road networks. In Proceedings of the 23rd International Conference on Data Engineering, ICDE2007, Istanbul, Turkey, pp. 796-805.
    [FJZ09] D. Fuhry, R. Jin, and D. Zhang. Efficient skyline computation in metric space. In Proceedings of the 12th International Conference on Extending Database Technology. EDBT2009, Saint-Petersburg, Russia, pp. 1042-1051.
    [GSG05] P. Godfrey, R. Shipley, and J. Gryz. Maximal vector computation in large data sets. In Proceedings of the 31st International Conference on Very Large Data Bases, VLDB2005, Trondheim, Norway, pp. 229-240.
    [LZL07] K. C. K. Lee , B. Zheng, H. Li, and W. C. Lee. Approaching the skyline in Z order. In Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB2007, Vienna, Austria, pp. 279-290.
    [OM84] J. A. Orenstein and T.H. Merret. A class of data structures for associate searching. In Proceedings of the 3rd ACM SIGACT-SIGMOD symposium on Principles of Database Systems, PODS1984, Waterloo, Canada, pp. 294-305.
    [PTF05] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline computation in database systems. ACM Trans. Database Syst. 30, 1 (Mar. 2005) pp. 41-82.
    [RDG] Random dataset generator for SKYLINE operator evaluation: http://randdataset.projects.postgresql.org/
    [SBS08] D. Sacharidis, P. Bouros, and T. Sellis. Caching dynamic skyline queries. In Proceedings of the 20th International Conference on Statistical and Scientific Database Management, SSDBM2008, Hong Kong, China, pp. 455-472.
    [SS06] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB2006, Seoul, Korea, pp. 751-762.
    [TEO01] K. L. Tan, P. K. Eng, and B. C. Ooi. Efficient progressive skyline computation. In Proceedings of the 27th International Conference on Very Large Data Bases, VLDB2001, Roma, Italy, pp. 301-310.
    [ZMC09] S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline computation using object-based space partitioning. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD’09, Providence, Rhode Island, pp. 483-494.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE