研究生: |
黃彥瑋 Huang, Yen-Wei |
---|---|
論文名稱: |
無機物包覆奈米碳管/乙烯酯樹脂複合材料之製備及其性質之研究 Preparation and Properties of Inorganic Material Coated Carbon Nanotube /Vinyl Ester Composites |
指導教授: |
馬振基
Ma, Chen-Chi M. |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 215 |
中文關鍵詞: | 奈米碳管 、乙烯酯樹脂 、複合材料 |
外文關鍵詞: | Carbon Nanotube, Vinyl Ester, Composites |
相關次數: | 點閱:98 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,半導體製程技術與微電子工業的蓬勃發展,電子元件朝著輕、薄、短、小與高密度發展,然而電子元件在工作時會產生熱,當熱無法排除時會降低元件效能或使電子訊號失真,更會導致電子元件損壞,因此,元件在運作時,系統散熱速度的快慢對電子元件的壽命及性質具有極大的影響。利用奈米碳管具有高的長徑比與高熱傳導的特性,以提高材料的熱傳導性質,製備出高導熱奈米複合材料, 但是奈米碳管具有的導電性會造成電子元件發生短路的現象。
本研究旨在建立奈米碳管界面絕緣包覆技術,以三步驟化學反應程序,利用無機物的絕緣性包覆奈米碳管以阻止其導電通路。第一,利用酸改質奈米碳管以增加奈米碳管分散性與提供反應官能基,第二,利用無機烷氧化物進一步改質奈米碳管以增進奈米碳管與無機物間的作用力,第三,以溶膠凝膠法製備奈米級無機物包覆奈米碳管。藉由拉曼光譜 (Raman Spectrum)、高解析電子能譜儀 (XPS)、紅外線光譜儀(FT-IR) 和熱重分析儀(TGA)分析鑑定,並以TEM觀察其型態。
研究結果證實已成功製備無機物包覆奈米碳管,由量測其電性與熱性質可知,利用無機物包覆奈米碳管可以成功阻止奈米碳管間的導電通路,使得奈米碳管的電阻值上升,電阻值皆可提高6 orders以上,增進其電絕緣性。三氧化二鋁包覆奈米碳管可以提升奈米碳管與三氧化二鋁的作用力,因此降低奈米碳管與三氧化二鋁的界面熱阻,使得奈米碳管的熱傳導值由6.44 W/mK上升到8.19 W/mK,增進27%的熱傳導性質。
本研究選用具有優異的耐化性、耐腐蝕性、快速含浸能力與良好的接著強度的乙烯酯樹脂,並利用奈米碳管的高導熱性加上界面絕緣包覆技術,以製備出無機物包覆奈米碳管/乙烯酯樹脂絕緣導熱奈米複合材料。以SEM觀察奈米複合材料橫截面可知無機物包覆奈米碳管可增進在基材的分散性,量測添加奈米碳管對複合材料電阻值、熱傳導值、玻璃轉移溫度(Tg)和熱膨脹係數(CTE)的影響。研究結果發現添加無機物包覆奈米碳管可增進複合材料的尺寸安定性、增加其Tg、維持複合材料的絕緣性並且提升熱傳導值。
當添加高含量(10phr)之純奈米碳管時,複合材料的電阻值會由7.83x1015 (Ωxcm)減少到48 (Ωxcm),降低14個數量級(orders),而添加添加氧化鋁包覆奈米碳管(Al2O3@SA-MWCNT)會由7.83x1015 Ωxcm減少到5.07x1012Ωxcm,只降低3 orders,並且維持複合材料的電絕緣性,添加三氧化二鋁包覆奈米碳管的複合材料熱傳導值會由0.131 (W/mK) 上升到1.123(W/mK),提升7.57倍,同時複合材料的Tg會由125.8℃上升到138.9℃,增加10.4%,而CTE會由79.6(10-6/K)下降到56.2(10-6/K),減少29.4%,提升複合材料的尺寸安定性。
Recent advances in nanofabrication have enabled the continuing reduction in size of electronic devices. Smaller sizes have led to higher device density at the expense of increased power demand and the resultant heat generation. Electronic devices were damaged by much heat accumulation. The thermal management strategies are thus critically important to continue high performance, reliability and lifetime of devices. Carbon nanotubes possess low density, large aspect ratio and unique thermal properties that make carbon nanotubes be utilized as filler to fabricate nanocomposites. High thermal conductivity nanocomposites based on carbon nanotubes can be developed to assist heat conduction,however, high electrical conductivity of carbon nanotube provides the conductive path causing short circuit of the device at the same time.
For solving this problem the technologies of coating inorganic materials on the carbon nanotube is proposed to hinder the electrical conducting channel. There are three chemical processes were proposed for fabricating multi-walled carbon nanotube (MWCNT) coated with inorganic materials. The carboxylic groups were first introduced on the MWCNTs using acid oxidation method for dispersing individual MWCNTs. In order to provide the interfacial interactions between the MWCNTs and the inorganic materials for self-assembly of the nanoinorganic layer, acid oxidized MWCNTs were reacted with a silane coupling agent. Finally, the molecular interaction between the silane functionalized MWCNTs and inorganic materials via sol-gel process was utilized to form the structure of inorganic layer coated on MWCNTs. MWCNTs coated with inorganic materials was analyzed by Raman spectrometer, X-ray photoelectron (XPS), Fourier transform infrared spectrometer (FT-IR) and thermogravimetric analysis (TGA). The morphology of MWCNTs coated with inorganic materials were observed by Transmission electron microscope (TEM).The effect of inorganic materials on the electrical resistivity and thermal conductivity of MWCNTs were investigated.
The electrical resistivity of modified MWCNTs was increased 6 orders of magnitude than pristine MWCNTs by coating with inorganic materials .This result exhibits that inorganic layers successfully hinder the electrical conducting channel. The thermal conductivity of MWCNTs was increased from 6.44 W/mK to 8.19 W/mK.The enhancement is 27%.
Vinyl ester resin possesses excellent adhesion, mechanical properties and resistance to chemicals, such as acids, alkalies, oxidizing chemicals and salt solutions, etc. However, the thermal conductivity of vinyl ester is too low to be utilized in thermal applications. In this study, MWCNTs coated with inorganic materials were added in vinyl ester to fabricate high thermal conductivtiy and electrical insulation nanocomposite. Inorganic materials coated on MWCNT/vinyl ester nanocomposites were also prepared to investigate the electrical resistivity, the thermal conductivity, glass transition temperature (Tg) and coefficient of thermal expansion (CTE).Results show that inorganic materials coated on MWCNTs can reduce the CTE of nanocomposites and increase Tg, the thermal conductivity of nanocomposites while retain electrical insulation at same time.
SEM microphotographs show that the inorganic materials coated on MWCNT / Vinyl ester nanocomposites possess better compatibility and disperity. The volume electrical resistivity decreased 14 orders of magnitude from 7.8 x1015 (ohm*cm) to 4.8 x101 (ohm*cm) with 10phr(parts per hundred parts of resin) of MWCNT. On the other hand, the volume electrical resistivity of Al2O3@SA-MWCNT/vinyl ester nanocomposites decreased slightly from 7.8 x1015 (ohm*cm) to ~5x1012 (ohm*cm).The volume electrical resistivity of nanocomposites decreased only 3 orders of magnitude and maintained electrical insulation . Because the electrical networks of Al2O3@SA-MWCNT in the nanocomposites were hindered by the alumina coating layer. The thermal conductivity of the Al2O3@SA-MWCNT/vinyl ester nanocomposites increased from 0.13 W/mK to 1.12 W/mK when the content of the MWCNTs was increased from 0 to 10 phr. The enhancement is 757% .Tg of the Al2O3@SA- MWCNT/vinyl ester nanocomposites increased from 125. 8oC to 138.9oC when the content of the MWCNT was increased from 0 to 10 phr. The enhancement is 10.4 %.CTE of the Al2O3@SA-MWCNT/vinyl ester nanocomposites decreased from 79. 6 (10-6/K) to 56.2(10-6/K) when the content of MWCNT was increased from 0 to 10 phr.
[1] Gordon E. Moore,Electronics, Volume 38, Number 8, April 19(1965)
[2] 黃振東,”台灣熱管理產業的回顧與展望”工業材料雜誌,247 期,(2007) 76
[3] 磐拓國際股份有限司,http://www.titanex.com.tw/pro3.htm
[4] Kuo-Chan Chiou, Tzong-Ming Lee, “Composition for thermal interface materials”,中華民國專利, 094145218 ,2007/12/01
[5] F.Miyashiro, N.Iwase, A.Tsuge, F.Ueno, M.Nakahashi, and T.Takahashi, “High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages”, IEEE transactions on components,hybrid an manufacturing technology, Vol.13 (1990),NO.2
[6] J.J.Matayaba, Intel corporation, U.S.A, ”Thermal interface material with aligned carbon nanotubes”中華民國專利,200516747(2005)
[7] 馬振基,"奈米材料科技原理與應用",全華科技圖書公司(2003)。
[8] H. W. Kroto, J.R. Heath, S. C. O’Brien, R.F. Curl, R.E. Smalley.” C60:Buckminsterfullerene” .Nature 318 (1985) 162
[9] S. Iijima, “Helical microtubules of graphitic carbon”. Nature (1991) 354
[10] S. Iijma, T. Ichihashi, Y. Ando, “Pentagons, heptagons and negative curvature in graphite microtubule growth”, Nature 356 (1992) 776.
[11] T. Ichihashi, S. Iijima, “Single-shell carbon nanotubes of 1nm diameter”, Nature 363 (1993) 603.
[12] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes “,Journal of Physical Chemistry B 104 (2000) 2794
[13] M.S. Dresselhaus, G. Dresselhaus, R. Saito,“Physics of Carbon Nanotubes”, Carbon33 (1995)883.
[14] A.Hirsch, “Functionalization of Single-Walled Carbon Nanotubes”, Angewandte Chemie International Edition 41 (2002) 1853
[15] E.T. Thostenson, Z. Ren, T.W. Chou, “Advances in the science and technology of carbon nanotubes and their composites”, Composites Science and Technology 61 (2001) 1899–1912
[16] S. Iijima, T. Ichlhashi., “Single-shell carbon nanotubes of 1-nm diameter.Nature”, 363 (1993)603–5.
[17] D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, et al., “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls.”, Nature363 (1993)605–7.
[18] C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. de la Chapelle, S. Lefrant, et al. “Large-scale production of single-walled carbon nanotubes by the electric-arc technique. “,Nature 388 (1997)756–8.
[19] Z. Shi, Y. Lian, F.H. Liao, X. Zhou, Z. Gu, Y. Zhang et al. “Large scale synthesis of single-wall carbon nanotubes by arc discharge method. “,Journal of Physics and Chemistry of Solids 61(7) (2000)1031–6.
[20] Y. Saito, K. Nishikubo, K. Kawabata, T. Matsumoto. “Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge.”, Journal of Applied Physics 80(5) (1996) 3062–7.
[21] P.G. Collins, P. Avouris. “Nanotubes for electronics”. Scientific American 283(6) (2000)62–9.
[22] A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias et al. “Large-scale purification of single-wall carbon nanotubes: Process, product and characterization. “Applied Physics A 67(1) (1998)29–37
[23] Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, et al.”Crystalline ropes of metallic carbon nanotubes”. Science 273 (1996) 483–7.
[24] Y. Zhang, S. Iijima. ,“Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperatures.” Applied Physics Letters 75(20) (1999)3087–9
[25] S.Huang, L.Dai, A.W. H. Mau, “Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films”. J.Phys. Chem. B 103 (1999)4223-4227
[26] T. W. Ebbesen, & P. M Ajayan,.,” Large-scale synthesis of carbon nanotubes”, Nature 358(1992) 220-222
[27] M. J.Treacy, T.W.Ebbesen, J.M.Gibson,”Exceptionally high Young's modulus observed for individual CNT”, Nature 381(1996) 20
[28] 成會明.”納米碳管制備,結構,物性及應用”, 化學工業出版社 2002年8月(北京)
[29] E.W. Wong, P.E. Sheehan, and C.M. Lieber ,“Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes “,Science 26 September 277 (1997) 1971
[30] M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, “Nanotube : A Revolution in Materials Science and Electronics”, Topics in Current Chemistry, 199(1999)
[31] N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, “MECHANICAL AND THERMAL PROPERTIES OF CARBON NANOTUBES”, Carbon 27 (1995 )925-930.
[32] J.Che, C. Tahir and William A Goddard III,”Thermal conductivity of carbon Nanotubes”,Nanotechnology 11 (2000) 65–69.
[33] P. Kim, L. Shi, A. Majumdar , P. L. McEuen “Thermal transport measurement of individual multiwalled nanotubes”, Phys. Rev. Lett 87(2001) 215502-1–4
[34] J. Hone , M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, J.E. Fischer,“Thermal properties of carbon nanotubes and nanotube-based materials”, Appl. Phys. A 74(2002)339–343
[35] J.P. Small, L.Shi, P.Kim,,“Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes”, Solid State Communications 127 (2003) 181–186
[36] X.S. Yang,”Modelling heat transfer of carbon nanotubes” ,Modelling Simul. Mater. Sci. Eng. 13 (2005) 893–902
[37] J.W. G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley & C. Dekker, “Electronic structure of atomically resolved carbon nanotubes” Nature 391 (1998) 59
[38] D.Wei and Y.Liu“The Intramolecular Junctions of Carbon Nanotubes” Adv. Mater. 1–27 (2008) 9999,
[39] T.W.Ebbesen,H.J.,Lezec,H.Hiura,J.W.Bennett,H.F.Ghaemi,T.Thio,”Electrical conductivity of individual carbon nanotubes “, Nature 382(1996)54 22
[40] H.Dai, E.W. Wong, C.M. Liebert,“Probing Electrical Transport in Nanomaterials:Conductivity of Individual Carbon Nanotubes” Science, 272,(1996)52
[41] Hirsch, O.Vostrowsky, “ Functionalization of Carbon Nanotubes”,.Top Curr Chem 245 (2005) 193–237
[42] Richard,F.Balavoine,P.Schultz,T.W.Ebbesen, C.Mioskowski ,“Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes “,SCIENCE 300(2003) 775
[43] Y.Kang and T. A.Taton,,”Micelle-Encapsulated Carbon Nanotubes: A Route to Nanotube Composites”,J. AM. CHEM. SOC. 125(2003) 5650-5651
[44] R.J.Chen, Y.Zhang, D. Wang, H. Dai, “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization” J Am Chem Soc 123(2001)3838
[45] N.Nakashima, Y.Tomonari, H.Murakami ,“Water-Soluble Single-Walled Carbon Nanotubes via Noncovalent Sidewall-Functionalization with a Pyrene-Carrying Ammonium Ion” Jap Chem Lett 6 (2002) 638
[46] N.Nakashima, "Soluble Carbon Nanotubes: Fundamentals and Applications",International Journal of Nanoscience 4 (1) (2005)119-137 .
[47] 關旭強、陳嘉勳、官振豐、林焜章、鐘明吉,”奈米碳管強化高分子複合材料專利簡介(上)─ 碳管懸浮液及碳管高分子複材的應用”,化工技術(2007)第15卷第2期
[48] Cheap Tubes Inc, http://www.cheaptubesinc.com/
[49] Nanocyl Headquarters, http://www.nanocyl.com/
[50] J. Chen, M. A. Haman, H. Hu, Y. S. Chen, A. M. Cao, P. C. Eklund, R. C. Haddon, Solution Properties of single-walled Carbon Nanotubes”, Science 282 (1998) 2
[51] Z. Shi. “Single-wall carbon nanotube colloids in polar solvents”. Chemical Communications 6 (2000) 461
[52] M. Ree, K. Kim, S. H. Woo, H. Chang, “Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities”, Journal of Applied Physics 81 (1997) 698
[53] B.C. Auman, T.L. Myers, D.P. Higley, “Synthesis and characterization of polyimides based on new fluorinated 3, 3-diaminobiphenyls” Journal of Polymer Science Part A:Polymer Chemistry 35 (1997) 2441
[54] H.Yu, Y. Jin, F. Peng, H.Wang, and J.Yang,“Kinetically Controlled Side-Wall Functionalization of Carbon Nanotubes by Nitric Acid Oxidation” J. Phys. Chem. C 112( 2008) 6758-6763
[55] J. E. Parton, S. J. T. Owen, Applied Electromagnetic 2nd edition., Macmillan publishers, London, 1986
[56] R. S. Whinnery, J. R. Fields and Waves in Commuication Electronics, 2nd edition, Cambridge University Press, Cambridge, England, 1986
[57] Y. M. Ying, R. K. Saini, F. Liang, A. K. Sadana, W. E. Bulleps, “Functionaliaztion of Carbon Nanotubes by Free Radicals” Organic Letters 5 (2003) 1471
[58] Friedel, C.; Crafts, J. M. Compt. Rend. (1877)84, 1392 & 1450
[59] J. B. Baek, C. B. Lyonsb, L. S. Tan, “Covalent modification of vapour-grown carbon nanofibers via direct Friedel–Crafts acylation in polyphosphoric acid “,J. Mater. Chem. 14 (2004) 2052
[60] H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J. Han, L. S. Tan, J. B. Baek,” In Situ Synthesis of Poly(ethylene terephthalate) (PET) in Ethylene Glycol Containing Terephthalic Acid and Functionalized Multiwalled Carbon Nanotubes (MWNTs) as an Approach to MWNT/PET “Nanocomposites Chem. Mater. 17 (2005) 5057
[61] J.S. Ye, H.F. Cui, X. Liu, T.M. Lim, W.D. Zhang, F.S. Sheu. “Preparation and characterization of aligned carbon nanotube-ruthenium oxide composites for supercapacitors”. Small 1(5) (2005)560–5.
[62] Y.W. Zhu, H.I. Elim, Y.L. Foo, T. Yu, Y.J. Liu, W. Ji, et al. “Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching”. Adv. Mater. 18(5) (2006)587–92.
[63] C.Y. Yen1, Y.F. Lin, S. H. Liao,C.C.Weng, Ching-Chun Huang, Yi-Hsiu Hsiao,C.C.M Ma, M.C. Chang, H. Shao,M.C. Tsai, C.K. Hsieh, C.H. Tsai and F.B. Weng,“Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells”, Nanotechnology 19 (2008) 375305
[64] M.Jayalakshmi, M.Mohan Rao, N.Venugopal, K.B.Kim,“Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications”,Journal of Power Sources 166 (2007) 578–583
[65] H.C. Choi, M. Shim, S. Bangsaruntip, H. Dai. ,“Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes.” J Am Chem Soc, 124(31) (2002)9058–9.
[66] T.M. Day, P.R. Unwin, N.R. Wilson, J.V. Macpherson. “Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks”. J Am Chem Soc 127(30) (2005)10639–47.
[67] Y.S. Min, E.J. Bae, K.S. Jeong, Y.J. Cho, J.H. Lee, W.B. Choi, et al.”Ruthenium oxide nanotube arrays fabricated by atomic layer deposition using a carbon nanotube template”. Adv Mater 15(12)(2003)1019
[68] S. Guo, L. Huang and E. Wang,” A novel hybrid nanostructure based on SiO2@carbon nanotube coaxial Nanocable”, New J. Chem. 31(2007)575–579
[69] M. Ebelman, Comptes Rendus Acad, Sci.,21(1846)502.
[70] J .Wen, and G. L. Wilkes, ”Organic/Inorganic Hybrid Network Materials by the Sol-Gel Approach ”, Chem. Mater. 8,(1996)1667.
[71] G. Schottner, ”Hybrid Sol-Gel Derived Polymer:Applications of Multifunctional Materials ”, Chem. Mater 13 (2001) 3422,
[72] J. Sun, L. Gao, W. Li, “Colloidal Processing of Carbon Nanotube/ Alumina Composites”, Chem. Mater. 14 ( 2002) 5169-5172
[73] K. Hernadi, E. Ljubovic´, J.W. Seo a, L. Forro´ ,“Synthesis of MWNT-based composite materials with inorganic coating”,Acta Materialia 51 (2003) 1447–1452
[74] E. A. Whitsitt and A.R. Barron,“Silica Coated Single Walled Carbon Nanotubes”, Nano Lett. 3(6)(2003)775
[75] K.Hernadi, E.Couteau, J.W. Seo, and La´ szlo´ Forro´,“Al(OH)3/ Multi- walled Carbon Nanotube Composite:Homogeneous Coverage of Al(OH)3 on Carbon Nanotube Surfaces” Langmuir19 (2003) 7026-7029
[76] T.Sainsbury and D.Fitzmaurice,“Templated Assembly of Semiconductor and Insulator Nanoparticles at the Surface of Covalently Modified Multiwalled Carbon Nanotubes”, Chem. Mater. 16,(2004) 3780-3790
[77] Jitianu , T. Cacciaguerra, R. Benoit, S. Delpeux, F. B_eguin, S. Bonnamy, ”Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites”, Carbon 42 (2004) 1147–1151
[78] J.C. Wojdel and S.T. Bromley,” Interaction of SiO2 with Single-Walled Carbon Nanotubes”, J. Phys. Chem. B 109(2005) 1387-1391
[79] Gomathi, S. R. C. Vivekchand, A. Govindaraj,C. N. R. Rao,“Chemically Bonded Ceramic Oxide Coatings on Carbon Nanotubes and Inorganic Nanowires”,Adv. Mater.,17 ( 2005) 2757–2761
[80] P.C. Ma , J.K.Kim , B.Z. Tang “Functionalization of carbon nanotubes using a silane coupling agent”, Carbon 44 (2006) 3232–3238
[81] D. Eder and A.H. Windle,“Carbon–Inorganic Hybrid Materials: The Carbon-Nanotube/TiO2 Interface”, Adv. Mater. 20 (2008) 1787–1793
[82] M.Kim, J.Hong , J.Lee, C.K. Hong , S.E. Shim,“Fabrication of silica nanotubes using silica coated multi-walled carbon nanotubes as the template”, Journal of Colloid and Interface Science 322 (2008) 321–326
[83] J. J. L Scala , J.A. Orlicki, C.Winston, E. J.Robinette,J. M. Sands, G.R. Palmese , “The use of bimodal blends of vinyl ester monomers to improve resin processing and toughen polymer properties”,Polymer 46 (2005) 2908–2921
[84] 上緯企業股份有限公司, http://www.swancor.com/index.html
[85] D.Egan ,C.Weber ,P.Fielder,”Tougher vinyl esters penetrate new markets”,Reinforced Pastics (1996.10)50-55
[86] G.Marsh,”Vinyl ester-the midway boat building resin”,Reinforced Pastics (2007.9)20-23
[87] R.P. Brill, G.R. Palmese, “An Investigation of Vinyl–Ester Styrene Bulk Copolymerization Cure Kinetics Using Fourier Transform Infrared Spectroscopy”, Journal of Applied Polymer Science 76(2000)1572–1582
[88] 馬振基、趙玨,”高分子複合材料(下冊)” , 國立編譯館, 華香園出版社,(2006)
[89] 廖建勛,化工資訊,8 (1996)3
[90] Gryshchuk, J. Karger-Kocsis, R. Thomann, Z. Konya, I. Kiricsi, “Multiwall carbon nanotube modified vinyl ester and vinyl ester–based hybrid resins”, Composites: Part A 37 (2006) 1252–1259
[91] A.T. Seyhan, F.H. Gojny, M. Tanoglu, K. Schulte ,“Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites”,European Polymer Journal 43 (2007) 2836–2847
[92] S.H. Liao, C.H. Hung, C.C. M.Ma, C.Y. Yen,Y.F. Lin, C.C. Weng,“Preparation and properties of carbon nanotube reinforced vinylester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells” ,Journal of Power Sources 176(2008) 175–182
[93] N.W. Ashcroft, N.D. Mermin.” Solid state physics”, Holt Rinehart and Winston, New York (1976) xxi, 826
[94] S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, “Effect of chemical functionalization on thermal transport of carbon nanotube composites” ,APPLIED PHYSICS LETTERS 85 (2004)2229
[95] C. W. Nan , Z. Shi, Y. Lin,“A simple model for thermal conductivity of carbon nanotube-based composites”,Chemical Physics Letters 375 (2003) 666–669
[96] C.W. Nan, G.Liu, Y.Lin, M. Li,”Interface effect on thermal conductivity of carbon nanotube composites”,APPLIED PHYSICS LETTERS 85 (2004)3549
[97] Q. Z. Xue, “Model for the effective thermal conductivity of carbon nanotube composites”, Nanotechnology 17 (2006) 1655–1660
[98] M. B. Bryning,D. E. Milkie, M. F. Islam, J. M. Kikkawa, A. G. Yodh,“Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites”,APPLIED PHYSICS LETTERS 87(2005) 161909
[99] D.U. Fangming, C.Guthy,T.Kashiwagi, J.E.Fisher, K.I.Winey, “An Infiltration Method for Preparing Single-Wall Nanotube/Epoxy Composites with Improved Thermal Conductivity”, Journal of Polymer Science: Part B: Polymer Physics 44 (2006)1513–1519
[100] P. Bonnet, D. Sireude, B. Garnier, and O. Chauvet, “Thermal properties and percolation in carbon nanotube-polymer composites”, APPLIED PHYSICS LETTERS 91 (2007) 201910
[101] S. M. Yuen, C.C. M. Ma , C.L. Chiang , J.A. Chang,S.W. Huang, S.C. Chen, C.Y. Chuang ,C.C. Yang, M.H. Wei “Silane-modified MWCNT/PMMA composites -Preparation,electrical resistivity, thermal conductivity and thermal stability”,Composites: Part A 38 (2007) 2527–2535
[102] J. E. Peters, D. V. Papavassiliou, and B.P. Grady “Unique Thermal Conductivity Behavior of Single-Walled Carbon Nanotube-olystyrene Composites”,Macromolecules, 2008, 41 (20), 7274-7277
[103] S.Wang, R.Liang, B.Wang, C.Zhang,”Dispersion and thermal conductivity of carbon nanotube composites”,Carbon 47,2009,53-57
[104] Y.L. Hsin, K. C. Hwang, and C.T. Yeh, “Poly(vinylpyrrolidone) Modified Graphite Carbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol Fuel Cells”, J. AM. CHEM. SOC. 2007, 129, 9999-10010
[105] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio,“Raman spectroscopy of carbon nanotubes”,Physics Reports 409 (2005) 47–99
[106] March, “Advanced Organic Chemistry”, A Wiley-Interscience Publication, 1991.
[107] R. Benrashid, G. L. Nelson, “Surface Characterization of Segmented Siloxane-Urethane Block Copolymers”, Journal of Applied Polymer Science 49 (1993) 523
[108] C. Ferrari, Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, J Phys. Rev. B 61 (2000) 14095
[109] H. L. Wu, C. H. Wang, C. C. M. Ma, Y. C. Chiu, M. T. Chiang, C. L. Chiang, “Preparations and properties of maleic acid and maleic anhydride functionalized multiwall carbon nanotube/poly(urea urethane) nanocomposites”, Composites Science and Technology 67 (2007) 1854
[110] L. Zhang, H. Li, K. T. Yue, S. L. Zhang, “Effects of intense laser irradiation on Raman intensity features of carbon nanotubes”, Phys. Rev. B: Condens. Matter 65 (2002) 073401
[111] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis,A. Siokou, I. Kallitsis, C. Galiotis “Chemical oxidation of multiwalled carbon nanotubes”, Carbon 46(2008) 833-840
[112] P.C. Ma, J.K. Kim, B.Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent, Carbon 44 ,2006, 3232–3238
[113] S. R. Corrie, G. A. Lawrie, and M.Trau,”Quantitative Analysis and Characterization of Biofunctionalized Fluorescent Silica Particles”,Langmuir, 2006, 22 (6), 2731-2737
[114] S. E. Baker, W.Cai, T.L. Lasseter, K. P. Weidkamp, and R. J. Hamers, “Covalently Bonded Adducts of Deoxyribonucleic Acid (DNA) Oligonucleotides with Single-Wall Carbon Nanotubes: Synthesis and Hybridization”,Nano Letters, 2002, 2 (12), 1413-1417
[115] D.G. Cahill, T.H. Allen, “Thermal conductivity of sputtered and evaporated SiOa and TiO2 optical coatings”,Appl. Phys. Lett. 1994,65 (3), 309
[116] J. Hone, M. Whitney, C. Piskoti, and A. Zettl,“Thermal conductivity of single-walled carbon nanotubes”,Phys. Rev. B, 59, 2514 (1999)
[117] S Song, and M.M. Yovanovich,"Relative Contact Pressure Dependence on Surface Roughness and 'Vickers Microhardness",AIAA Joumal of Thermophysics and Heat Transfer, 1988.(2), No.,l, pp.43-47,
[118] Charles Kittel “Introduction to Solid State Physics” ver.8e
[119] Y. Wu, C. H. Liu, H. Huang, and S. S. Fan, “Effects of surface metal layer on the thermal contact resistance of carbon nanotube arrays”, Appl. Phys. Lett. 2005,87, 213108
[120] X. Yunsheng, L. Xiangcheng, D.D.L. Chung, “Sodium silicate based thermal interface material for high thermal contact conductance,” J.Electron. Packag. 122 (2000) 128–131.
[121] C.D. Wagner, A.V. Naumkin,Anna Kraut-Vass, J.W. Allison, C.J. Powell, and J. R. Rumble,“NIST Xray Photoelectron Spectroscopy Database”, http://srdata.nist.gov/xps/Default.aspx,August 27, 2007