簡易檢索 / 詳目顯示

研究生: 許明智
Hsu, Ming-Chih
論文名稱: 用類神經網路機器學習預測蛋白質之二次結構
Neural Network Learning on Prediction of the Secondary Structure of Proteins
指導教授: 蘇豐文
Soo, Von-Wun
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
畢業學年度: 83
語文別: 英文
論文頁數: 51
中文關鍵詞: 蛋白質二次結構;氨基酸;類神經網路;錯誤後向傳遞;預測準確率
外文關鍵詞: Protein Secondary Structure;Amino Acid;Neural Network;Error Back Propagation;Prediction Accuracy
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長久以來, 在分子生物學上, 利用蛋白質的氨基酸序列來預測它的二次結
    構一直是一個很重要卻始終無法完全解決的問題. 雖然已經有許多預測方

    法被提出討論 (大致可分為四類, 即統計資訊, 樣式比對, 類神經網路,

    以及複合式系統) , 但是這些方法的預測準確率始終停留在百分之六十到

    七十之間. 在本論文中, 我們對蛋白質二次結構的形成機制提出一套假

    設 (NDA: Neighbors Determine All 鄰居決定一切) , 並且利用遞迴式

    類神經網路實作出一個NDA系統. 在使用實際蛋白質資料庫對這個系統加

    以訓練及測試後, 我們發現其實驗結果足以證實NDA和實際資料庫間有極

    高的相容性.也就是說, NDA可以解釋實際蛋白質資料庫中所含資料的行

    為. 然而因為NDA本身的限制, 這個系統無法使用於實際的預測工作中.為

    了利用存在此NDA系統中的資訊, 我們另外提出了兩種方法: 單邊NDA和

    NECN. 單邊NDA簡化了NDA的嚴格限制, 因此可以於特定的實際預測工作中

    使用. 而NECN則是結合了NDA網路以及傳統網路架構. 先從NDA網路中抽取

    出新的氨基酸代碼, 再將這代碼應用於傳統的網路架構上, 形成一個兩階

    段式的架構. 我們使用實際蛋白質資料庫以及人造NDA資料庫 (根據NDA假

    設造出一個人造資料庫) 來訓練及測試NECN後, 得到的結果證實了NECN的

    確優於傳統使用的網路架構.

    The prediction of the secondary structure of a protein from its

    amino acids sequence has long been a not-yet-completely solved

    problem despite its importance in molecular biology. Although

    various prediction methods have been proposed, the prediction

    accuracy still hovered around 60-70%. In this thesis we

    proposed a hypothesis on the formation mechanism of secondary

    structures called NDA ( Neighbors Determine All ). A NDA

    implementation using recurrent neural network is tested on a

    database consists of proteins with known secondary structures

    sequence. The result confirms that NDA hypothesis is highly

    compatible to the database. However, the NDA network cannot be

    applied on practical prediction tasks due to certain reasons.

    To use the information contained in NDA network we proposed two

    approaches: the Single-Side NDA and NECN. The Single-Side NDA

    relieves the strict restrictions of NDA and provides

    possibility of practical application. The NECN ( NDA Extracted

    Code Neural network ) combines a NDA neural network and a

    neural network which is traditionally used in this problem to

    form a two phase secondary structure prediction system. NECN is

    tested with the protein database and another database

    constructed using NDA hypothesis. Both results show that NECN

    performs better than conventional neural network methods used

    in this problem. Although the performance gain is not large,

    the NECN can still be improved in many aspect. In addition, the

    NDA hypothesis and its neural network implementation are also

    useful tools in this task.


    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE