研究生: |
柯志忠 |
---|---|
論文名稱: |
8-羥奎林鋁鹽之奈米結構及其場發射性質研究 |
指導教授: |
彭宗平
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 8-羥奎林鋁鹽 、場發射 、奈米結構 |
相關次數: | 點閱:122 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
關鍵字: 奈米科技、掃描式探針顯微術、奈米碳管、奈米線、有機發光二極體、X光繞射、掃描式電鏡、穿隧式電鏡、紅外線吸收光譜、光激發光、光譜之振動結構
近十年科學家對奈米科技的基礎研究投注了很多的心力,其中以掃描式探針顯微術對奈米科技之研究助益尤大。奈米碳管及奈米線製備已有顯著之成果,發射平面顯示器為最有潛力的應用。本實驗係發展應用有機發光二極體之材料—8-羥奎林鋁鹽(Alq3)來製備奈米線。
與傳統的奈米線製備方法不同的地方,在於利用熱蒸鍍系統來製備奈米線,並沈積在以液態氮冷卻之基板上。特別值得一提的是有機奈米線在文獻上很少被提及,所以在低溫下利用熱蒸鍍來製備Alq3奈米線極具利用價值得。
藉由X光繞射(XRD)及掃描(SEM)和穿隧(TEM)式電鏡的分析,可以鑑定Alq3 奈米線非晶之特性和其外貌,經由紅外線吸收光譜可得知這些奈米線確由Alq3的分子所組成。在光激發光方面之研究,可以了解奈米線在發光的行為和其粉末一致。另一方面,經由場發射之試驗得知Alq3在平面顯示器有其應用可能性。
此外,本研究應以奈米光學來探討奈米薄膜結構。藉由偏光近場光學掃描顯微鏡來判定Alq3膜的結晶區域,且在掃描式電鏡和原子力顯微鏡之影像顯示出相同結構,光激發光的光譜中之振動結構也印證了其結晶性。
Abstract
Key words: Nanotechnology, Scanning probe microscopy, carbon nanotubes, nanowires, organic light emitting diode, XRD, SEM, TEM, FTIR, PL , PM-NSOM
A great deal of effort has been dedicated to the fundamental research of nanotechnology in the past 10 years. At the same time, the development of scanning probe microscopy, such as AFM and NSOM, has enabled the characterization of the nano scale. The investigation on the fabrication and application of nanostructured materials has attracted intensivel attention. The application in a flat panel display is regarded as one of the most promising applications of carbon nanotubes. Meanwhile, methods of synthesizing different species of nanowires have also been explored, and their field emission characteristics are one of the primary subject of study. A widely-used material of OLEDs, tris-(8-hydroxyquinolate)-aluminum (Alq3), is employed to fabricate nanowires in this study.
Unlike traditional routes in preparing nanowires, such as the vapor-liquid-solid (VLS) process, an insert-gas evaporation method was applied to fabricate Alq3 nanowires on a liquid nitrogen-trapped substrate. Very few studies have been concentrated on the fabrication of organic nanowires before. In this work, the Alq3 nanowires can be readily produced at a relatively low temperature compared to the traditional routes for inorganic nanowires.
From the x-ray diffraction patterns and TEM and SEM images, the partially amorphous nature and wire-like structure of Alq3 nanowires were described. Further identification of the Alq3 nanowires was conducted by means of FTIR, which evidenced that they were indeed composed of Alq3 molecules. The measurement of PL revealed a similar luminescence behavior of Alq3 nanowires to that of the bulk. The field emission characteristics showed a great possibility to apply the Alq3 nanowires to a flat panel display.
In addition, a nano-optics technique, i.e., near-field scanning optical microscopy (NSOM), was employed to identify the crystalline nature of Alq3 film which was prepared in vacuum. AFM and SEM images showed a rod-like topography on the surface of the Alq3 film. A vibronic progression in the PL spectrum provided the evidence of crystallinity in film.
References
[1] H W. Kroto, J. R. Heath, S. C. O’Brien, Robert F. Curl and R. E. Smalley, Nature, 318, 162 (1985).
[2] S. Iijima, Nature, 354, 561 (1991).
[3] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science, 281, 2013 (1998).
[4] A. N. Goldstein, C. M. Echer and A. P. Alivisatos, Science, 256, 1425 (1992).
[5] H. Ohnish, Y. Kondo and K. Takayanag, Nature, 395, 780 (1998).
[6] A. M. Morales and C. M. Lieber, Science, 279, 208 (1998).
[7] R. S. Wanger and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964).
[8] E. I. Givargizov, J. Cryst. Growth, 31, 20 (1975).
[9] Y. Wu and P. Yang, J. Am. Chem. Soc., 123, 3165 (2001).
[10] Y. Cui, J. Lauhon, M. S. Gudiksen, J. Wang and C. M. Lieber, Appl. Phys. Lett., 78, 2214 (2001).
[11] X. Duan and C. M. Lieber, Adv. Mater., 12, 298 (2000).
[12] H. Y. Peng, Z. W. Pan, L. X. Xu, X. H. Fan, N. Wang, C. Lee and S. Lee, Adv. Mater., 13, 317 (2001).
[13] J. D. Holmes, K. P. Johnston, R. Chrestopher Doty and B. A. Korgel, Science, 287, 1471 (2000).
[14] Y. H. Lee, Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee and D. J. Bae, Adv. Mate., 12, 746 (2000).
[15] W. Han, S. Fan, Q. Li and B. Gu, Appl. Phys. Lett., 71, 2271 (1997).
[16] W. Han, S. Fan, Q. Li and Y. Hu, Science, 277, 1287 (1997).
[17] J. K. Lee, W. K. Koh, W. S. Chae and Y. R. Kim, Chem. Commun., 2 138 (2002).
[18] F. Zheng. L. Liang, Y. Gao, J. H. Sukamto. and C. Ardahl, Nano Lett., in press (2002).
[19] A. Noy, A. E. Miller, J. E. Klare, B. L. Week, B. W. Wood and J. J. DeYoreo, Nano Lett. 2, 109 (2002).
[20] Y. Zhang, K. Suenage, C. Colliex and S. Iijima, Science, 281, 973 (1998).
[21] Y. H, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett., 75, 2921 (1999).
[22] B. Zheng, Y. Wu, P. Yang and J. Liu, Adv. Mater., 14, 122 (2002).
[23] S. Fan, M G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science, 283, 512 (1999).
[24] P. G. Collins, A. Zettl, H. Bando, A. Thess and R. E. Smalley, Science, 287, 100 (1997).
[25] T. Rueckes, k. Kim, E. Joselevich, C. Y. Tseng, C. Cheung and C. M. Lieber, Science, 289, 94 (2000).
[26] S. S. Wong, J. D. Harper, P. T. Lansbury Jr. and C. M. Lieber, J. Am. Chem. Soc., 120, 603 (1998).
[27] S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung and C. M. Lieber, Nature, 394, 52 (1998).
[28] W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 295, 2425 (2002).
[29] N. Tessler, V. Medvedev, M. Kazes, S. Kan and U. Banin, Science, 295, 1506 (2002).
[30] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001).
[31] E. Betzig and J. K. Trautman, Science, 257, 189 (1992).
[32] C. W. Tang, and S. A. Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
[33] A. Curioni, M. Boero and W. Andreoni, Chem. Phys. Lett., 294, 263 (1998).
[34] A. Curioni and W. Andreoni, Appl. Phys. Lett., 72, 1575 (1998).
[35] M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, J. Am. Chem. Soc., 122, 5147 (2000).
[36] L. S. Sapochak, A. Padmaperuma, N. Washton, F. Endrino, G. T. Schmett, J. Marshall, D. Fogarty, P. E. Burrow, and S. R. Forrest, J. Am. Chem. Soc., 123, 630 (2001).
[37] P. Addy, D. F. Evans, R. N. Sheppard, Inorg. Chim. Acta, 127, L19 (1987).
[38] K. Naito, and A. Miura, J. Phys. Chem., 97, 6240 (1993).
[39] J. F. Moulin, M. Brinkmann, A. Thierry, J. C. Wittmann, Adv. Mater., 14, 436 (2002).
[40] A. Schmidt, M. L. Anderson and N. R. Armstrong, J. Appl. Phys., 79, 5619 (1995).
[41] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCathy, S. R. Forrest, J. A. Cronin and M. E. Thompson, J. Appl. Phys., 79, 7991 (1996).
[42] M. D. Halls and H. B. Schlegel, Chem. Mater., 13, 2632 (2001).
[43] C. P. Kushto, Y. Iizumi, J. Kido and Z. H. Kafafi, J. Phys. Chem. A, 104, 3670 (2000)
[44] R. W. Wood, Phys. Rev., 5, 1 (1897).
[45] E. L. Murphey and R. H. Good, Phys. Rev., 102, 1464 (1956).
[46] C. A. Spindt, J. Appl. Phys., 39, 3504 (1968).
[47] R. N. Thomas and H. C. Nathanson, Appl. Phys. Lett., 21, 384 (1972).
[48] B .C. Djubua and N. N. Chubun, IEEE Trans. Elec. Dev., 38, 2314 (1991).
[49] W. A. Mackie, R. L. Hartman, M. A. Anderson, and P. R. Davis, J. Vac. Sci. Technol. B, 12, 722 (1994).
[50] M. Endo, H. Nakane and H. Adachi, J. Vac. Sci. Technol. B, 14, 2114 (1996).
[51] M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn and T. M. Lyszczarz, Appl. Phys. Lett., 68, 2294 (1996).
[52] I. Musa, D. A. I. Munindrasdasa, G. A. J. Amaratunga and W. Eccleston, Nature, 395, 362 (1998).
[53] F. S. Baker, A. R. Osborn and J. Williams, Nature, 239, 96 (1972).
[54] W. A. de Heer, A. Chatelain and D. Ugarte, Science, 270, 1179 (1995).
[55] S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Sceince, 283, 512 (1999).
[56] J. M. Bonard, J. P. Salvetat, T. Stockli, L. Forro and A. Chatelain, Appl. Phys. A, 69, 245 (1999).
[57] J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, K. Kern and A. Chatelain, Adv. Mater. 13, 184 (2001).
[58] X. T. Zhou, N. Wang, C. K. Au, H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee and S. T. Lee, Mat. Sci. Eng., A286, 119 (2000).
[59] J. L. Gole, J. D. Stout, W. L. Rauch and Z. L Wang, Appl. Phys. Lett, 76, 2346 (2000).
[60] X. Zhang, L Zhang, G. Meng, G. Li, Jin-Phillipp NY and F. Phillipp, Adv. Mater., 13, 1238 (2001).
[61] L. Cao, Z. Zhang, L. Sun, C. Gao, M. He, Y. Wang, Y. Li, X. Zhang, G. Li, J. Zhang and W. Wang, Adv. Mater., 13, 1701 (2001).
[62] Y. Wu, R. Fan and P. Yang, Nano Lett., 2, 83 (2002).
[63] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature, 415, 617 (2002).
[64] X. Duan and C. M. Lieber, J. Am. Chem. Soc., 122, 188 (2000).
[65] M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater., 13, 113 (2001).
[66] M. S. Gudiksen and C. M. Lieber, J. Am. Chem. Soc., 122, 8801 (2001).
[67] Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao and Y. Tang, Nano Lett. in press (2002).
[68] H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber, Nature, 375, 769 (1995).
[69] E. W. Wong, B. W. Maynor, L. D. Burns and C. M. Lieber, Chem. Mater., 8, 2041 (1996).
[70] X.T. Zhou, C. K. Au. H. L. Lai, H. Y. Peng, I. Bello, C. S. Lee and S. T. Lee, Appl. Phys. Lett., 19, 2918 (1999).
[71] H. L. Lai, H. Y. Peng, C. K. Au, N. Wang, I. Bello, C. S. Lee, S. T. Lee and X. F. Duan, Appl. Phys. Lett., 76, 294 (2000).
[72] Z. Pan, H. Lai, C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. Lee, N. Wong, S. T. Lee and S. Xie, Adv. Mater. 12, 1186 (2000).
[73] X.D.Bai,J. D. Guo, J. Yu and E. G. Wang, Appl. Phys. Lett., 76, 2624 (2000).
[74] F. G. Tarntair, C. Y. Wen, L. C. Chen, J. J. Wu, K. H. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong and H. C. Chen, Appl. Phys. Lett., 76, 2630 (2000).
[75] C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello and S. T. Lee, Appl. Phys. Lett., 75, 1700 (1999).
[76] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, J. Y. Peng and Y. F. Chen, J. Am. Chem. Soc., 123, 2791 (2001).
[77] Y. H. Tang, C. S. Lee and S. T. Lee, Appl. Phys. Lett., 79, 1673 (2001).
[78] J. Chen, S. Wang, C. Yang and W. Ge, Appl. Phys. Lett., 80, 3620 (2002).
[79] C. G. Granqvist and R. A. Buhrman, J. Appl. Phys., 47, 2200 (1976).
[80] A. R. Tholen, Acta Metall., 27, 1765 (1979).
[81] S. G. Kim and J. R. Brock, J. Appl. Phys., 60, 509 (1986).
[82] S. Kasukabe, S. Yatsuya and R. Uyeda, Jpn. J. Appl. Phys., 13, 1714 (1974).
[83] C. Kaito, Jpn. J. Appl. Phys., 17, 601 (1978).
[84] S. Yatsuya, S. Kasukabe and R. Uyeda, Jpn. J. Appl. Phys., 12, 1675 (1973).
[85] M. D. Lumb, “Luminescence Specetroscopy” New York, London, pp 98 (1978).
[86] C. Kittel, “Introduction to Solid State Physics”, New York, Wiley, pp 75 (1996).
[87] P. Martin and E. S. Charles, “Electronic Processes in Organic Crystals and Polymers”, New York, Oxford University, pp 27 (1999).
[88] R. Fowler and L. W. Nordheim, Proc. R. Soc. London, 119, 173 (1928).
[89] L. W. Nordheim, Proc. R. Soc. London, 121, 626 (1928).
[90] R. Fowler and E. A. Guggenheim, “Statistical Thermodynamics”, Cambridge University Press, New York, pp 460 (1956).
[91] E. L. Murphy and R. H. Good Jr., Phys. Rev., 102, 1464 (1956).
[92] R. E. Burgess and H. Kroemer, Phys. Rev., 90, 515 (1953).
[93] E. W. Muller, J. Appl. Phys., 26, 732 (1955).
[94] S. C. Kung, T. F. Kuo, B. J. Li and H. J. Lai, private.
[95] T. Ha, T. Enderie and D. S. Chemla, Phys. Rev. Lett., 77, 3979 (1996).
[96] D. A. Higgins, D. A. Vanden, J. Kerimo and P. F. Barbara, J. Phys. Chem., 100, 13794 (1996).
[97] P. K. Wei and W. S. Fann, J. Microsc., 202, 148 (2000).
[98] JASCO editors, Near Field Scanning Optical Microscopy, http://www.jasco.co.uk/nearfield.htm, 2002/6/26.
[99] M. D. Halls and R. Aroca, Can. J. Chem., 76, 1730 (1998).