研究生: |
胡耀仁 Hu, Yao-Jen |
---|---|
論文名稱: |
低溫壁面對H2/O2層流預混火焰之冷卻效應 The Quenching Effect of Cold Walls on Steady Laminar Premixed H2/O2 Flame |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 冷卻效應 、低溫壁面 、H2/O2層流預混火焰 、一步驟化學反應 、詳細化學反應 |
相關次數: | 點閱:89 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以數值方法來模擬低溫壁面對穩態層流氫氧預混火焰之冷卻效應。將問題簡化為二維直角座標,當火焰接觸到低溫的固態表面時會產生冷卻熄滅的現象而造成燃燒上的不完全,其中氣相化學反應分別就一步驟反應和詳細化學反應兩方面來探討,文中同時模擬了在不同的進口速度和平板間距下,低溫壁面對流場的冷卻效應。從模擬所得結果發現,一步驟反應在低溫下的模擬與實際情形並不相符,低溫壁面對於H2、O2和H2O等組份在流場中的分佈並無太大的影響;以詳細化學反應模擬時,則很明顯的,組份在低溫壁面與平行板對稱軸附近的高溫區部分的分佈有明顯不同,在高溫區化學反應較完全,低溫區則有較多反應不完全的殘餘物質,同時這些殘餘物質在壁面上因累積而再次發生反應,產生了類似擴散火焰的次高溫反應區。以詳細化學反應模擬時,不同的進口速度會使火焰面固定在不同的位置,不會因進口速度大於火焰速度而造成火焰吹熄,這是因為邊界層的低速流場對於火焰有穩定作用。而平板間距在小於一特定值後,任何的流場條件都無法引燃氣體。
[1] Westbrook, C. K., “A Numerical Study of Laminar Wall Quenching,” Combustion and Flame 40: 81-99 (1981)
[2] Wichman, I. S., and Bruneaux, G., “Head-On Quenching of a Premixed Flame by a Cold Wall,” Combustion and Flame 103: 296-310 (1995)
[3] Vlachos, D. G., Schmidt, L. D., and Aris, R., “Ignition and Extinction of Flames Near Surfaces: Combustion of H2 in Air,” Combustion and Flame 95: 313-335(1993)
[4] Kim, H. M., Lee, S. R., and Chung, S. H., “Numerical Study on the Structure and Extinction of Stretched Lean H2/Air Premixed Flames,” Transport Phenomena in Thermal Engineering, pp. 643-647
[5] Fairchild, P. W., Fleeter, R. D., and Fendell, F. E., “Raman Spectroscopy Mwasurements of Flame Quenching in a Duct-Type Crevice,” Twentieth Symposium (International) on Combustion, The Combustion Institute, 1984, pp.85-90
[6] Carrier, G. F., Fendell, F. E., and Feldman, P. S., “Laminar Flame Propagation/Quench for a Parallel-Wall Duct,” Twentieth Symposium (International) on Combustion, The Combustion Institute, 1984, pp.67-74
[7] Poinsot, T. J., Haworth, D. C., and Bruneaux, G., “Direct Simulation and Modeling of Flame-Wall Interaction for Premixed Turbulent Combustion,” Combustion and Flame 95: 118-132 (1993)
[8] Hackert, C. L., Ellzey, J. L., and Ezekoye, O. A., “Effects of Thermal Boundary Conditions on Flame Shape and Quenching in Ducts,” Combustion and Flame 112: 73-84(1998)
[9] Turns, S. R., “An Introduction to Combustion,” McGraw-Hill, Inc.1996
[10] Ezekoye, O., Greif, R., and Sawyer, R. F., “Increased Surface Temperature Effects on Wall Heat Transfer during Unsteady Flame Quenching,” Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, 1992, pp. 1465-1472
[11] Ezekoye, O. A., “Heat Transfer Modeling during Knock and Flame Quenching in an Engine Chamber,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, 1996, pp. 2661-2668
[12] Varma, A. K., Chatwani, A. U., and Bracco, F. V., “Studies of Premixed Laminar Hydrogen-Air Flames Using Elementary and Global Kinetics Models,” Combustion and Flame 64: 233-236(1986)
[13] Yetter, R. Y., Dryer, F. L., and Rabitz, H., “A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics,” Combust. Sci. and Tech., 1991, Vol. 79, pp. 97-128
[14] Frenklach, M., Wang, H., and Rabinowitz, M. J., “Optimization and Analysis of Large Chemical Kinetic Mechanism Using the Solution Mapping Method Combustion of Methane,” Prog. Energy Combust. Sci. 1992, Vol. 18, pp. 47-73
[15] Sanchez, A. L., Balakrishnan, G., Linan, A., and Williams, F. A., “Relationships between Bifurcation and Numerical Analysis for Ignition of Hydrogen-Air Diffusion Flame,” Combustion and Flame 105: 569-590 (1996)
[16] Vigoler, C., Figreira Da Silva, L. F., Desborpes, D., and Deshaies, B., “Onset of Oblique Detonation Waves: Comparison Between Experimental and Numerical Results for Hydrogen-Air Mixtures,” Twenty-Six Symposium (International) on Combustion/ The Combustion Institute, 1996/ pp. 3023-3031
[17] Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, T., Kerr, J. A., Pilling, M. A., Tore, J., Walker, R. W., and Warnatz, J., J. Phys. Chem. Ref. Data 21(3), 1992
[18] Warnatz, J., “Combustion Chemistry,” Chap. 5, Springer-Verlarg, New York (1984)
[19] Smooke, M. D., and Giovangigli, V., “Formulation of the Premixed and Nonpremixed Test Problems in Reduce Kinetic Mechanisms and Asympotic Approximations for Methane-Air Flames”, Lecture Notes in Physics, Smooke, M. D. ed.,(1991)
[20] Pantankar, S. V., “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing Corporation, 1980
[21] Lee, S. H., “A Strongly Implicit Solver for Two-Dimensional Elliptic Differential Equation,” Numerical Heat Transfer, Part B. Vol.16, pp.161-178, 1989
[22] Daubert, T. E., and Danner, R. T., “Physical and Thermodynamic Properties of Pure Chemical,” Data Compilation, Hemisphere, NY (1989)
[23] Kee, R.. J., Rupley, F. M., and Miller, J. A., “The Cemkin Thermodynamic Data Base,” Sandia Report, SAND87-8215B, reprinted March 1991.