研究生: |
賴明聰 |
---|---|
論文名稱: |
以磁珠為固態基材之核酸/蛋白質微陣列之建立及酵母菌己糖轉運蛋白HXT7啟動子之研究 Construction of the magnetic bead-based solid support for DNA/Protein microarray and Study of Saccharomyces cerevisiae hexose transporter HXT7 promoter |
指導教授: | 許宗雄 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 91 |
中文關鍵詞: | 磁珠 、微陣列 、己糖轉運蛋白 、啟動子 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物晶片或微陣列是在固態基材上以微小化技術固定數量極多的不同核酸或蛋白質探針,可應用雜合原理與方法,經由檢測而獲取大量有關探針或標的物樣品的資訊。我們擬開發一套命名為非均相雜和反應及非均相聚合連鎖反應(HHHM)微陣列系統。此微陣列系統之核心技術為利用磁珠做為固定探針之固態基材,使液態雜和反應可在微井中進行以改善微陣列雜和反應及靈敏度、且應用範圍較廣泛。在此研究中,我們發展將核酸引子固定於磁珠固態基材的方法,並利用結合核酸引子的磁珠以非均相聚合鏈鎖反應將核酸探針倍增之方法。經由雜和反應後,我們發現PolyScience®公司的氨基磁珠有最好的核酸-核酸雜和反應效率。而且,我們以人類血清白蛋白(HSA)及anti-HSA抗體為例子,發展將蛋白質固定於磁珠固態基材的方法。經由雜和反應後,PolyScience®公司的羧基磁珠結合HSA蛋白質或anti-HSA抗體之可檢測螢光標識標的物最低含量分別為0.04及0.004微克。最後,我們以人類非小型肺癌細胞株(H460)之核蛋白為例子,發展核酸-蛋白質結合反應的實驗方法。
當酵母菌處於低濃度葡萄糖環境下,高親和性己糖轉運蛋白(HXT6, HXT7)基因已知將會被誘發並且大量表現。在此研究中,我們藉由利用高親和性己糖轉運蛋白啟動子所啟動之轉化酶(invertase)表現可以幫助回復酵母菌菌株GN 3C.2於棉子糖(raffinose)培養基中的生長缺陷,並且發現HXT7啟動子相較於HXT6啟動子具有更強及維持轉化酶高表現量的能力,進一步的比較發現,HXT7啟動子所表現之轉化酶基本表現量分別是酵母菌菌株GN 3C.2及W303-1之內源性轉化酶的139及28倍。另外,經由與熟知的持續表現型酒精去氫酶啟動子(constitutive ADH1 promoter)比較,HXT7啟動子也可以於短時間內,表現出高量的增強綠螢光蛋白(enhanced green fluorescence protein),因此,HXT7啟動子具有在酵母菌菌株中做為建構異源(heterologous)蛋白質表現系統的潛力。另一方面由文獻得知,在缺乏葡萄糖的環境下轉錄因子Rgt1會抑制己糖轉運蛋白的表現,我們發現長度1.25 kb的HXT7啟動子包含有三個Rgt1結合位置,其活性會因為將Rgt1基因刪除後而增加三倍,並且在缺乏葡萄糖的環境下只有一個位於-1164至-1158區間之Rgt1結合位置參與HXT7啟動子之調控。
Biochips or microarrays are microscopic arrays of large set of DNA sequences or peptides immobilized on solid substrates. They are, in principle, hybridization-based methods and are useful for obtaining information about either the probes or the target molecules. We intend to develop a novel microarray system, designated as HHHM (Heterogeneous-phase Hybridization and Heterogeneous-phase Magnetic-PCR). The core technology of this HHHM system is using magnetic bead as solid support for probe immobilization. It performs the liquid phase hybridization reaction in microwells to optimize array hybridization and sensitivity and to extend their range of applications. In this study, we developed methods for immobilizing DNA primer on magnetic bead and for PCR amplification of DNA probes using the magnetic bead conjugated primer as one of the two primers. After hybridization reaction, we found the PolyScience® amine magnetic bead displayed the best efficiency of DNA-DNA hybridization. Furthermore, we used the human serum albumin (HSA) and anti-HSA antibodies as examples to develop methods for immobilizing protein on magnetic bead. The minimal amount of fluorescence labeled targets was 40 and 4 ng, respectively, detected by the PolyScience® carboxylated magnetic bead conjugated with HSA or anti-HSA antibodies. Finally, we used the nuclear protein extracted from human non-small cell lung cancer cells (H460) as an example to develop a protocol for detecting double-strand DNA-protein interaction.
In Saccharomyces cerevisiae, both the high-affinity hexose transporter genes HXT6 and HXT7 are known to be induced and highly expressed under low hexose concentration. In this work we report that both the high-affinity hexose transporter HXT6 and HXT7 promoters are sufficient for restoring the growth rate of S. cerevisiae strain GN 3C.2 by complementary expression of invertase under raffinose medium. Moreover, we found that HXT7 promoter was more powerful than HXT6 one to produce and maintain high level invertase. Surprisingly, HXT7 promoter also displayed a high basal expression level of invertase for about 139- and 28-fold more than those of strains GN 3C.2 and W303-1, respectively. In addition, HXT7 promoter expressed relative higher level of enhanced green fluorescent protein (eGFP) than that of constitutive ADH1 one in three different S. cerevisiae strains, even during short-term incubation in glucose medium. Therefore, HXT7 promoter has the potential application for heterologous protein expression in S. cerevisiae. On the other hand, the Rgt1 transcription factor was reported as a repressor for HXT induction in the absence of glucose. We found the activity of the 1.25 kb HXT7 promoter containing three Rgt1 binding sites was upregulated for about 3-fold when the RGT1 gene was deleted. And only the Rgt1 binding site located at -1164 to -1158 was involved in the regulation of HXT7 promoter in the absence of glucose.
[1] J.C. Venter, M.D. Adams, and E.W. Myers, et al., The sequence of the human genome, Science 291 (2001) 1304-1351.
[2] E.S. Lander, L.M. Linton, B. Birren, et al., Initial sequencing and analysis of the human genome, Nature 409 (2001) 860-921.
[3] J.C. Alwine, D.J. Kemp, G.R. Stark, Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes, Proc Natl Acad Sci U S A 74 (1977) 5350-5354.
[4] P. Liang, A.B. Pardee, Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science 257 (1992) 967-971.
[5] A.J. Berk, P.A. Sharp, Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids, Cell 12 (1977) 721-732.
[6] M.D. Adams, J.M. Kelley, J.D. Gocayne, M. Dubnick, M.H. Polymeropoulos, H. Xiao, C.R. Merril, A. Wu, B. Olde, R.F. Moreno, et al., Complementary DNA sequencing: expressed sequence tags and human genome project, Science 252 (1991) 1651-1656.
[7] K. Okubo, N. Hori, R. Matoba, T. Niiyama, A. Fukushima, Y. Kojima, K. Matsubara, Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression, Nat Genet 2 (1992) 173-179.
[8] V.E. Velculescu, L. Zhang, B. Vogelstein, K.W. Kinzler, Serial analysis of gene expression, Science 270 (1995) 484-487.
[9] M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270 (1995) 467-470.
[10] M. Schena, D. Shalon, R. Heller, A. Chai, P.O. Brown, R.W. Davis, Parallel human genome analysis: microarray-based expression monitoring of 1000 genes, Proc Natl Acad Sci U S A 93 (1996) 10614-10619.
[11] D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo, M.S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, E.L. Brown, Expression monitoring by hybridization to high-density oligonucleotide arrays, Nat Biotechnol 14 (1996) 1675-1680.
[12] B.B. Haab, M.J. Dunham, P.O. Brown, Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions, Genome Biol 2 (2001) RESEARCH0004.
[13] G.J. Vora, C.E. Meador, M.M. Bird, C.A. Bopp, J.D. Andreadis, D.A. Stenger, Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp, Proc Natl Acad Sci U S A 102 (2005) 19109-19114.
[14] G.J. Vora, C.E. Meador, D.A. Stenger, J.D. Andreadis, Nucleic acid amplification strategies for DNA microarray-based pathogen detection, Appl Environ Microbiol 70 (2004) 3047-3054.
[15] J.R. Pollack, C.M. Perou, A.A. Alizadeh, M.B. Eisen, A. Pergamenschikov, C.F. Williams, S.S. Jeffrey, D. Botstein, P.O. Brown, Genome-wide analysis of DNA copy-number changes using cDNA microarrays, Nat Genet 23 (1999) 41-46.
[16] J.G. Hacia, Resequencing and mutational analysis using oligonucleotide microarrays, Nat Genet 21 (1999) 42-47.
[17] C. Debouck, P.N. Goodfellow, DNA microarrays in drug discovery and development, Nat Genet 21 (1999) 48-50.
[18] D.J. Duggan, M. Bittner, Y. Chen, P. Meltzer, J.M. Trent, Expression profiling using cDNA microarrays, Nat Genet 21 (1999) 10-14.
[19] Z.H. Fan, S. Mangru, R. Granzow, P. Heaney, W. Ho, Q. Dong, R. Kumar, Dynamic DNA hybridization on a chip using paramagnetic beads, Anal Chem 71 (1999) 4851-4859.
[20] S.S. Ghosh, G.F. Musso, Covalent attachment of oligonucleotides to solid supports, Nucleic Acids Res 15 (1987) 5353-5372.
[21] M.U. Kopp, A.J. Mello, A. Manz, Chemical amplification: continuous-flow PCR on a chip, Science 280 (1998) 1046-1048.
[22] A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup, Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device, Anal Chem 68 (1996) 4081-4086.
[23] M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, An integrated nanoliter DNA analysis device, Science 282 (1998) 484-487.
[24] Y. Kohara, H. Noda, K. Okano, H. Kambara, DNA probes on beads arrayed in a capillary, 'Bead-array', exhibited high hybridization performance, Nucleic Acids Res 30 (2002) e87.
[25] R.P. Huang, R. Huang, Y. Fan, Y. Lin, Simultaneous detection of multiple cytokines from conditioned media and patient's sera by an antibody-based protein array system, Anal Biochem 294 (2001) 55-62.
[26] T.E. Kim, S.W. Park, N.Y. Cho, S.Y. Choi, T.S. Yong, B.H. Nahm, S. Lee, G. Noh, Quantitative measurement of serum allergen-specific IgE on protein chip, Exp Mol Med 34 (2002) 152-158.
[27] S.P. Fitzgerald, J.V. Lamont, R.I. McConnell, O. Benchikh el, Development of a high-throughput automated analyzer using biochip array technology, Clin Chem 51 (2005) 1165-1176.
[28] C.O. Pabo, R.T. Sauer, Transcription factors: structural families and principles of DNA recognition, Annu Rev Biochem 61 (1992) 1053-1095.
[29] N.L. Craig, The mechanism of conservative site-specific recombination, Annu Rev Genet 22 (1988) 77-105.
[30] C. Margulies, J.M. Kaguni, Ordered and sequential binding of DnaA protein to oriC, the chromosomal origin of Escherichia coli, J Biol Chem 271 (1996) 17035-17040.
[31] C.P. Woodbury, Jr., P.H. von Hippel, On the determination of deoxyribonucleic acid-protein interaction parameters using the nitrocellulose filter-binding assay, Biochemistry 22 (1983) 4730-4737.
[32] C. Jansen, A.M. Gronenborn, G.M. Clore, The binding of the cyclic AMP receptor protein to synthetic DNA sites containing permutations in the consensus sequence TGTGA, Biochem J 246 (1987) 227-232.
[33] B. Bowen, J. Steinberg, U.K. Laemmli, H. Weintraub, The detection of DNA-binding proteins by protein blotting, Nucleic Acids Res 8 (1980) 1-20.
[34] S.D. Hanes, R. Brent, A genetic model for interaction of the homeodomain recognition helix with DNA, Science 251 (1991) 426-430.
[1] M.A. Romanos, C.A. Scorer, J.J. Clare, Foreign gene expression in yeast: a review, Yeast 8 (1992) 423-488.
[2] P.L. Liljestrom-Suominen, V. Joutsjoki, M. Korhola, Construction of a Stable alpha-Galactosidase-Producing Baker's Yeast Strain, Appl Environ Microbiol 54 (1988) 245-249.
[3] J.O. Nehlin, M. Carlberg, H. Ronne, Yeast galactose permease is related to yeast and mammalian glucose transporters, Gene 85 (1989) 313-319.
[4] J.A. Barnett, The utilization of sugars by yeasts, Adv Carbohydr Chem Biochem 32 (1976) 125-234.
[5] S. Ozcan, M. Johnston, Function and regulation of yeast hexose transporters, Microbiol Mol Biol Rev 63 (1999) 554-569.
[6] F. Schulte, R. Wieczorke, C.P. Hollenberg, E. Boles, The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast, J Bacteriol 182 (2000) 540-542.
[7] Z. Yang, L.F. Bisson, The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae, Yeast 12 (1996) 1407-1419.
[8] L. Ye, J.A. Berden, K. van Dam, A.L. Kruckeberg, Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae, Yeast 18 (2001) 1257-1267.
[9] E. Reifenberger, K. Freidel, M. Ciriacy, Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux, Mol Microbiol 16 (1995) 157-167.
[10] E. Reifenberger, E. Boles, M. Ciriacy, Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression, Eur J Biochem 245 (1997) 324-333.
[11] A. Maier, B. Volker, E. Boles, G.F. Fuhrmann, Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters, FEMS Yeast Res 2 (2002) 539-550.
[12] J.A. Diderich, M. Schepper, P. van Hoek, M.A. Luttik, J.P. van Dijken, J.T. Pronk, P. Klaassen, H.F. Boelens, M.J. de Mattos, K. van Dam, A.L. Kruckeberg, Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae, J Biol Chem 274 (1999) 15350-15359.
[13] H. Liang, R.F. Gaber, A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6, Mol Biol Cell 7 (1996) 1953-1966.
[14] J.L. DeRisi, V.R. Iyer, P.O. Brown, Exploring the metabolic and genetic control of gene expression on a genomic scale, Science 278 (1997) 680-686.
[15] S. Krampe, O. Stamm, C.P. Hollenberg, E. Boles, Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis, FEBS Lett 441 (1998) 343-347.
[16] S. Ozcan, T. Leong, M. Johnston, Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription, Mol Cell Biol 16 (1996) 6419-6426.
[17] H. Forsberg, P.O. Ljungdahl, Sensors of extracellular nutrients in Saccharomyces cerevisiae, Curr Genet 40 (2001) 91-109.
[18] M. Johnston, J.H. Kim, Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae, Biochem Soc Trans 33 (2005) 247-252.
[19] G.M. Santangelo, Glucose signaling in Saccharomyces cerevisiae, Microbiol Mol Biol Rev 70 (2006) 253-282.
[20] S. Ozcan, M. Johnston, Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose, Mol Cell Biol 15 (1995) 1564-1572.
[21] L. Tomas-Cobos, P. Sanz, Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter gene, Biochem J 368 (2002) 657-663.
[22] M.C. Schmidt, R.R. McCartney, X. Zhang, T.S. Tillman, H. Solimeo, S. Wolfl, C. Almonte, S.C. Watkins, Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae, Mol Cell Biol 19 (1999) 4561-4571.
[23] J. Lakshmanan, A.L. Mosley, S. Ozcan, Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1, Curr Genet 44 (2003) 19-25.
[24] A.L. Mosley, J. Lakshmanan, B.K. Aryal, S. Ozcan, Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator, J Biol Chem 278 (2003) 10322-10327.
[25] K.M. Flick, N. Spielewoy, T.I. Kalashnikova, M. Guaderrama, Q. Zhu, H.C. Chang, C. Wittenberg, Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters, Mol Biol Cell 14 (2003) 3230-3241.
[26] J.H. Kim, J. Polish, M. Johnston, Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1, Mol Cell Biol 23 (2003) 5208-5216.
[27] H. Moriya, M. Johnston, Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I, Proc Natl Acad Sci U S A 101 (2004) 1572-1577.
[28] B. Akache, K. Wu, B. Turcotte, Phenotypic analysis of genes encoding yeast zinc cluster proteins, Nucleic Acids Res 29 (2001) 2181-2190.
[29] P. Schjerling, S. Holmberg, Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators, Nucleic Acids Res 24 (1996) 4599-4607.
[30] R.B. Todd, A. Andrianopoulos, Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif, Fungal Genet Biol 21 (1997) 388-405.
[31] R. Marmorstein, S.C. Harrison, Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster, Genes Dev 8 (1994) 2504-2512.
[32] R. Marmorstein, M. Carey, M. Ptashne, S.C. Harrison, DNA recognition by GAL4: structure of a protein-DNA complex, Nature 356 (1992) 408-414.
[33] K. Swaminathan, P. Flynn, R.J. Reece, R. Marmorstein, Crystal structure of a PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster, Nat Struct Biol 4 (1997) 751-759.
[34] B.P. Cormack, G. Bertram, M. Egerton, N.A. Gow, S. Falkow, A.J. Brown, Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans, Microbiology 143 ( Pt 2) (1997) 303-311.
[35] R.D. Gietz, R.A. Woods, Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method, Methods Enzymol 350 (2002) 87-96.
[36] M.C. Silveira, E. Carvajal, E.P. Bon, Assay for in vivo yeast invertase activity using NaF, Anal Biochem 238 (1996) 26-28.
[37] M. Carlson, B.C. Osmond, D. Botstein, Mutants of yeast defective in sucrose utilization, Genetics 98 (1981) 25-40.
[38] S. Ostergaard, C. Roca, B. Ronnow, J. Nielsen, L. Olsson, Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene, Biotechnol Bioeng 68 (2000) 252-259.
[39] M.A. Post-Beittenmiller, R.W. Hamilton, J.E. Hopper, Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae, Mol Cell Biol 4 (1984) 1238-1245.
[40] J.M. Gancedo, Yeast carbon catabolite repression, Microbiol Mol Biol Rev 62 (1998) 334-361.
[41] S. Rolland, M. Hnatova, M. Lemaire, J. Leal-Sanchez, M. Wesolowski-Louvel, Connection between the Rag4 glucose sensor and the KlRgt1 repressor in Kluyveromyces lactis, Genetics 174 (2006) 617-626.
[42] A. Kaniak, Z. Xue, D. Macool, J.H. Kim, M. Johnston, Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae, Eukaryot Cell 3 (2004) 221-231.
[43] M. Papamichos-Chronakis, T. Gligoris, D. Tzamarias, The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor, EMBO Rep 5 (2004) 368-372.
[44] D. Hwang, J.J. Smith, D.M. Leslie, A.D. Weston, A.G. Rust, S. Ramsey, P. de Atauri, A.F. Siegel, H. Bolouri, J.D. Aitchison, L. Hood, A data integration methodology for systems biology: experimental verification, Proc Natl Acad Sci U S A 102 (2005) 17302-17307.
[45] C.L. Denis, J. Ferguson, E.T. Young, mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source, J Biol Chem 258 (1983) 1165-1171.