簡易檢索 / 詳目顯示

研究生: 張家新
Chang, Chia-Hsin
論文名稱: 使用介電泳增強側向位移已達成大腸桿菌篩選
Use dielectrophoresis to enhance lateral displacement to achieve E. coli sorting
指導教授: 曾繁根
Tseng, Fan-gang
饒達仁
Yao, Da-Jeng
口試委員: 王本誠
Wang, Pen-Cheng
吳仁貴
Wu, Jen-Kuei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 76
中文關鍵詞: 介電泳側向位移裝置細菌分選
外文關鍵詞: electrophoresis, DLD, sorting
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 敗血症是指當人體的免疫不足,受感染(細菌、黴菌、病毒等病原體)所引發的複雜性、全身發炎反應,為一種不可忽視危及性命的疾病。在台灣,致死率甚至高達七成。既然細菌入侵造成感染死亡的風險高居不下,能夠及時鑑定細菌、並對症下藥成為首要其衝不可輕視任務。而目前最廣為常見的細菌檢測方法為;利用培養基進行細菌增殖,再藉由一連串生物反應;微生物的發酵、吸附特定受質、並進行還原與降解,以此鑑定生物種類,或是使用聚合酵素連鎖反應(Polymerase Chain Reaction,PCR),質譜鑑定(Mass Spectrometry,MS)等大型儀器進行判讀、分析。雖然利用大型儀器的方法精準度高,但如若遇上培養困難、生長遲緩、無視當菌種等待時間將不可避免地成為問題。
    為了改善上述耗時的問題,本次研究提出新型微流體介電泳晶片,將介電泳力(Dielecteophoresis, DEP)加進DLD裝置中(deterministic lateral displacement)。傳統DLD裝置藉由在晶片中設立許多柱子結構,當包含不同大小粒子的溶液由入口注入後,藉由慣性撞擊,使之慢慢跨越流線,達到分離的效果。然而隨著尺寸效應(Scaling Law)的引響,在微流體系統中慣性力將不再佔有主導地位,故本次研究嘗試將柱子以電極代替,用介電泳代替慣性力提升分選效率。最後在晶片末端利用SERS 指紋識別技術檢測微流道中的細菌。


    Sepsis refers to the complex and systemic inflammatory response caused by infection (bacteria, mold, virus and other pathogens) when the body's immune system is insufficient. It is a life-threatening disease that cannot be ignored. In Taiwan, the fatality rate is as high as 70%. Since the risk of infection and death caused by bacterial invasion remains high, being able to identify bacteria in a timely manner and prescribe the right medicine has become the primary task that cannot be underestimated. At present, the most common bacterial detection methods are: using culture media to multiply bacteria, and then through a series of biological reactions; fermentation of microorganisms, adsorption of specific substrates, reduction and degradation to identify biological species, or use polymerization Enzyme chain reaction (Polymerase Chain Reaction, PCR), mass spectrometry (MS) and other large instruments for interpretation and analysis. Although the method using large instruments is highly accurate, it will inevitably become a problem if it encounters cultivation difficulties, growth retardation, and ignoring the waiting time of the strain.
    In order to improve the above-mentioned time-consuming problem, this research proposes a new type of microfluidic dielectrophoresis wafer, which adds dielectrophoresis (Dielecteophoresis, DEP) into the DLD device (deterministic lateral displacement). The traditional DLD device uses many pillar structures in the chip. After the solution containing particles of different sizes is injected from the inlet, the inertial impact causes it to slowly cross the streamline to achieve the effect of separation. However, with the influence of the Scaling Law, the inertial force will no longer dominate in the microfluidic system. Therefore, this study tried to replace the column with an electrode and use dielectrophoresis to replace the inertial force to improve the sorting efficiency. Finally, SERS fingerprint recognition technology is used to detect bacteria in the micro flow channel at the end of the wafer.

    摘要 2 Abstract 3 致謝 5 目錄 6 圖目錄 9 第一章 緒論 12 1.1前言 12 1.2研究動機 13 1.3研究目標 14 第二章 文獻回顧 16 2.1 慣性分離 16 2.1.1 慣性分離裝置介紹與原理 17 2.2 介電泳 19 2.2.1 微粒與介質之極化效應 19 2.2.2 介電泳原理 20 2.2.3 介電泳種類與應用 22 2.3 側向位移裝置 24 2.3.1 DLD裝置介紹 24 2.3.2 DLD經驗公式 26 2.4 PDMS改質 27 2.4.1 PDMS-PEG 27 第三章 實驗設計與方法 29 3.1 實驗與晶片設計 29 3.1.1晶片參數 30 3.1.2晶片位移角 31 3.2. 實驗製程與原理 32 3.2.1碳化製程 32 3.2.2電鍍製程 36 3.2.3黃光微影製程 37 3.2.4微流道製程 39 3.2.5氧電漿接合技術 39 3.3 實驗設備介紹 40 3.4實驗藥品/化學品 44 3.5 藥品製備處理 47 3.5.1 配置血液之緩衝溶液 47 3.5.2 檢體分離及染色流程 47 第四章實驗結果與討論 49 4.1 理論計算 49 4.1.1 CM factor理論值 49 4.1.2 電泳力估算(F1) 51 4.1.3 流體推力估算(F2) 52 4.1.4 流阻力估算(F3) 53 4.2製程與優化 54 4.2.1 碳化製程 54 4.2.2兩次旋塗 57 4.2.3電流擁擠效應 60 4.2.4虛設陰極 60 4.2.5溫度效應 61 4.3分離晶片成品 62 4.3.1 SEM形貌圖 63 4.3.2 EDS材料分析圖 63 4.4分離晶片測試結果(yet) 64 4.4.1紅血球、大腸桿菌、PS球各別電性 64 4.4.2紅血球、大腸桿菌分離 66 4.4.3 Comsol 模擬 71 第五章 結論與未來工作 73 5.1 未來工作 74 參考文獻 75

    1. Tintinalli, J., Tintinalli's emergency medicine: a comprehensive study guide. 2016: McGraw-Hill Education.
    2. Martin, G.S., Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert review of anti-infective therapy, 2012. 10(6): p. 701-706.
    3. Jawad, I., I. Lukšić, and S.B. Rafnsson, Assessing available information on the burden of sepsis: global estimates of incidence, prevalence and mortality. Journal of global health, 2012. 2(1).
    4. Lyle, N.H., et al., Barriers to the effective treatment of sepsis: Antimicrobial agents, sepsis definitions, and host‐directed therapies. Annals of the New York Academy of Sciences, 2014. 1323(1): p. 101-114.
    5. Kumar, A., et al., Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical care medicine, 2006. 34(6): p. 1589-1596.
    6. Biondi, E.A., et al., Blood culture time to positivity in febrile infants with bacteremia. JAMA pediatrics, 2014. 168(9): p. 844-849.
    7. Ohlsson, P., et al., Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Analytical chemistry, 2016. 88(19): p. 9403-9411.
    8. Bloos, F., et al., Evaluation of a polymerase chain reaction assay for pathogen detection in septic patients under routine condition: an observational study. PloS one, 2012. 7(9): p. e46003.
    9. Josefson, P., et al., Evaluation of a commercial multiplex PCR test (SeptiFast) in the etiological diagnosis of community-onset bloodstream infections. European journal of clinical microbiology & infectious diseases, 2011. 30(9): p. 1127-1134.
    10. Jones, T., Electromechanics of ParticlesCambridge Univ. Press, Cambridge, 1995.
    11. Demierre, N., et al., Characterization and optimization of liquid electrodes for lateral dielectrophoresis. Lab on a Chip, 2007. 7(3): p. 355-365.
    12. Mernier, G., et al., Continuous-flow electrical lysis device with integrated control by dielectrophoretic cell sorting. Lab on a Chip, 2010. 10(16): p. 2077-2082.
    13. Pohl, H.A., The motion and precipitation of suspensoids in divergent electric fields. Journal of Applied Physics, 1951. 22(7): p. 869-871.
    14. Zhao, K., R. Peng, and D. Li, Separation of nanoparticles by a nano-orifice based DC-dielectrophoresis method in a pressure-driven flow. Nanoscale, 2016. 8(45): p. 18945-18955.
    15. Jubery, T.Z., S.K. Srivastava, and P. Dutta, Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis, 2014. 35(5): p. 691-713.
    16. Hyoung Kang, K., et al., Effects of dc-dielectrophoretic force on particle trajectories in microchannels. Journal of Applied Physics, 2006. 99(6): p. 064702.
    17. Khoshmanesh, K., et al., Dielectrophoretic platforms for bio-microfluidic systems. Biosensors and Bioelectronics, 2011. 26(5): p. 1800-1814.
    18. Koklu, M., et al., Negative dielectrophoretic capture of bacterial spores in food matrices. Biomicrofluidics, 2010. 4(3): p. 034107.
    19. Zhu, J., T.R.J. Tzeng, and X. Xuan, Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis, 2010. 31(8): p. 1382-1388.
    20. Srivastava, S.K., et al., A continuous DC-insulator dielectrophoretic sorter of microparticles. Journal of Chromatography A, 2011. 1218(13): p. 1780-1789.
    21. Hawkins, B.G. and B.J. Kirby, Electrothermal flow effects in insulating (electrodeless) dielectrophoresis systems. Electrophoresis, 2010. 31(22): p. 3622-3633.
    22. Cen, E.G., et al., A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells. Journal of microbiological methods, 2004. 58(3): p. 387-401.
    23. Cheng, I.-F., et al., A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab on a Chip, 2009. 9(22): p. 3193-3201.
    24. Cheng, I.-F., C.-C. Chung, and H.-C. Chang, High-throughput electrokinetic bioparticle focusing based on a travelling-wave dielectrophoretic field. Microfluidics and nanofluidics, 2011. 10(3): p. 649-660.
    25. Mao Fukuyama, M.T., Dynamic wettability of polyethylene glycolmodified polyIJdimethylsiloxane) surfaces in an aqueous/organic two-phase system. Lab on a Chip, 2018.
    26. Alla Synytska, E.B., Adaptive PEG−PDMS Brushes: Effect of Architecture on Adhesiveness in Air and under Water. Macromolecules, 2021.
    27. 周君穎, 詹莉芬, and 葉名倉. 聚二甲基矽氧烷. 2010; Available from:
    28. Hallfors, N.G., F. Alhammadi, and A. Alazzam. Deformation of red blood cells under Dielectrophoresis. in Bio-engineering for Smart Technologies (BioSMART), 2016 International Conference on. 2016. IEEE.
    29. Qiang, Y., et al., Experimental electromechanics of red blood cells using dielectrophoresis-based microfluidics, in Mechanics of Biological Systems and Materials, Volume 6. 2017, Springer. p. 129-134.
    30. Jonathan Cottet, O.F., EP: A New Computational Tool for Dielectric Modeling of Particles and Cells. Biophysical.
    31. Xuan, J.-d.L.Æ.P.Z.Æ.Y.-h.W.Æ.Y.-s.L.Æ.M., Uniformity study of nickel thin-film microstructure deposited by electroplating. Microsyst Techno, 2009.

    QR CODE