研究生: |
林義暐 Lin, Yi-Wei |
---|---|
論文名稱: |
凹版轉印印刷技術及電致塗料圖案化技術之研究討論 Study of Gravure Offset Printing Technology and Electro-wetting on Dielectric Technology |
指導教授: |
饒達仁
Yao, Da-Jeng |
口試委員: |
林啟萬
Lin, Chii-Wann 林致廷 Lin, Chih-Ting 陳致真 Chen, Chih-Chen 李明蒼 Lee, Ming-Tsang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 93 |
中文關鍵詞: | 凹版轉印 、電致潤濕 、印刷電子 |
外文關鍵詞: | Gravure Offset Printing, Electro-wetting, Printed Electronics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
印刷電子技術可達到快速製造、可撓曲應用等技術特點,因此近年來越來越
多國際廠商與研究單位投入印刷電子技術的開發與應用。在眾多印刷電子技術中
又以凹版轉印技術有機會與潛力可達到細線寬與大面積生產的需求,因此本研究
透過凹版轉印技術討論細線寬印刷的製程條件、參數與關鍵組件,探究其相互關
聯的因素,本論文最終成功於實驗室實現在塑膠基板上印製線寬3 µm之細微導
線,並且透過此技術於軟性印刷電路板、觸控元件與透明 LED 顯示屏幕進行產
品驗證;此外,在研究過程中亦發現,凹版轉印之模具因為製程的限制,使其模
具容易受損且圖案的變化亦受到模具的限制,對於特定產品與製程開發驗證階段,
浪費太多資源於模具的製作,導致無法有效地加速產品的驗證時間,因此,本研
究另一部分將討論介電潤濕效應如何透過”數位模具”的概念,實現快速變換圖
案進行電子電路製造。
關於介電潤濕效應於”數位模具”的討論,本研究之重點放在開發電致塗料
圖案化印刷技術與設備,利用介電潤濕原理,施加電壓場於塗料上,造成塗料與
模具間接觸面之電荷重新分佈,而塗料因電荷間相互排斥導致表面張力下降,進
而縮小與模具間之接觸角,進一步藉由電極設計控制接觸角改變,造成塗料不對
稱形變後進行移動,最終驅動塗料圖案化分佈後進行轉印。轉印方式可依被印基
板特性(軟板、硬板)選擇藉由轉印輪(blanket roller)轉印,或者是以硬板直接接
觸圖案化液體後進行轉印,完成膠體轉印後再進行化鍍。本研究主要研發重點有
二,其中包括:(1)研究可藉由電潤濕原理驅動之觸發膠體塗料。(2)開發電致轉
印印刷設備,並研究製程參數與。本研究所提之印刷技術,僅需製作單一模具,
藉由程式控制電場之分佈,就能對介電液體進行多樣化圖案分佈。而所開發的塗
i
料,免除了貴重金屬銀粒子的使用,在完成轉印後進行化鍍製程即可得到具備導
電特性的電路成型,其成本相較於噴墨印刷所使用的導電銀漿有絕對優勢。最終,
本研究初步成功開發介電潤濕之驅動晶片與可透過紫外光固化之介電液體,此外,
本研究針對電場條件的設定已有初步的成果,其中電場頻率在50 kHz的條件下
可以達到較佳的液體驅動外型;電場條件除電壓設定外,電流在介電液體驅動行
為上亦扮演一種要角色,依據本研究之實驗成果,提高電流約0.1 A使介電液體
擴散的面積可大於提高電壓10 V的效應。整體而言,本研究討論的介電驅動晶
片,可提供任意圖案化規格之機動性,而生產成本優於現有需要製作模具之印刷
技術,建立介電驅動液體圖案化印刷技術相關塗料與關鍵零組件及設備,可以提
供國內廠商在電子電路之設計研發初期,能夠進行低成本而快速且多樣化之產品
打樣驗證,縮短產品開發時程,進而把握產品上市之黃金時期。
Printed electronics technology offers advantages such as rapid manufacturing and flexible applications, which have attracted increasing attention from international companies and research institutions in recent years. Among the various printed electronics technologies, gravure transfer printing stands out with its potential to meet the demands for fine linewidths and large-scale production. This study investigates the process conditions, parameters, and key components for fine linewidth printing using gravure transfer printing technology, exploring the interrelated factors. The research successfully achieved the printing of fine conductive lines with a width of 3 µm on plastic substrates in the laboratory. Moreover, the technology was validated through applications in flexible printed circuit boards, touch components, and transparent LED display screens.
During the study, it was found that the gravure molds are prone to damage and pattern limitations due to process constraints. This leads to significant resource waste in mold production during the verification stages of specific products and processes, hindering the acceleration of product validation. Therefore, another focus of this study explores how the concept of "digital molds" can leverage the electrowetting effect to achieve rapid pattern changes for electronic circuit manufacturing.
Regarding the discussion of the electrowetting effect in "digital molds," this study focuses on developing an electrically induced coating patterning printing technology and equipment. By applying an electric field to the coating material, the electrowetting principle induces a redistribution of charges at the interface between the coating and the mold. The repulsion between charges reduces surface tension, thereby decreasing the contact angle with the mold. Further control of contact angle changes through electrode design creates asymmetric deformation, causing the coating material to move. This eventually drives the patterned distribution of the coating material, which is then transferred. Depending on the substrate type (flexible or rigid), transfer methods can involve a blanket roller or direct contact transfer to the patterned liquid, followed by metallization after colloid transfer.
This study focuses on two main objectives: (1) researching triggerable colloid coatings driven by the electrowetting principle, and (2) developing electrically induced transfer printing equipment and studying process parameters. The proposed printing technology requires only a single mold and uses programmatically controlled electric field distributions to achieve diverse pattern distributions of dielectric liquids. The developed coating eliminates the need for expensive silver particles; conductive circuits are formed via metallization after transfer, offering a cost advantage over inkjet printing with conductive silver paste.
The study successfully developed an electrowetting-driven chip and UV-curable dielectric liquids. Initial results also determined optimal electric field conditions, with a frequency of 50 kHz achieving better liquid-driving shapes. In addition to voltage, current plays a key role in dielectric liquid behavior. Experimental results show that increasing the current by approximately 0.1 A expands the dielectric liquid’s area more effectively than increasing the voltage by 10 V.
In summary, the electrowetting-driven chip discussed in this research offers flexibility for arbitrary pattern specifications and superior production cost-effectiveness compared to existing mold-based printing technologies. Establishing related coatings, key components, and equipment for dielectric liquid patterning can provide domestic manufacturers with a low-cost, rapid, and versatile solution for early-stage product prototyping and verification in electronic circuit design and development, shortening product development cycles and capturing critical time-to-market opportunities.
[1] 段啟聖,「印刷電子之機會與挑戰」,工業材料雜誌,第337期,142~146
頁,2015年1月
[2] Sung Kwon Cho et al., Journal of Microelectromechanical Systems,
12(2003), 70-80.
[3] Ui-Chong Yi1 et al., J. Micromech. Microeng., 16(2006), 2053-2059.
[4] Arghya Narayan Banerjee et al., Journal of Colloid and Interface
Science., 362(2011),567-574
[5]Qi Ni, et al., Sensors and Actuators A: Physical, 247(2016), 579-586.
[6] D. Caputo et al., MicroelectronicsJournal, 45(2014), 1684-1690.
[7] R. Malk et al., Sensors and Actuators B: Chemical, 154(2011).
[8] S. K. Cho, H. Moon, and C.-J. Kim, "Creating, transporting, cutting, and
pp. 70-80, 2003.
merging liquid droplets by electrowetting-based actuation for digital
microfluidic circuits," Journal of Microelectromechanical systems, vol. 12,
[9]J. Zeng and T. Korsmeyer, "Principles of Droplet Electrohydroynamics
for Lab-On-A-Chip," Lab Chip, Vol. 4, pp.265-277, 2004.
[10] J. Song, R. Evans, Y.-Y. Lin, B.-N. Hsu, and R. B. Fair, "A scaling model
for electrowetting-on-dielectric microfluidic actuators," Microfluidics and
Nanofluidics, vol. 7, pp. 75-89, 2009.
[11] R. Renaudot, V. Agache, Y. Fouillet, G. Laffite, E. Bisceglia, L. Jalabert, et
al., "A programmable and reconfigurable microfluidic chip," Lab on a Chip, - 90 -
vol. 13, pp. 4517-4524, 2013.
[12] A. Banerjee, J. H. Noh, Y. Liu, P. D. Rack, and I. Papautsky,
"Programmable electrowetting with channels and droplets,"
Micromachines, vol. 6, pp. 172-185, 2015.
[13]李相廷,"應用介電濕潤晶片於微流體圖案化與液體介電泳對於液珠拉伸長
度之探討",國立清華大學動機所,台灣新竹,碩士學位論文,2019。
[14]邱盈臻,"應用介電濕潤晶片於定量體積之微流體圖案化印刷與虛擬模具成
型探討",國立清華大學動機所,台灣新竹,碩士學位論文,2021。
[15] Roar R. Søndergaard, Markus H€osel, Frederik C. Krebs, "Roll-to-Roll
Fabrication of Large Area Functional Organic Materials", JOURNAL OF
POLYMER SCIENCE PART B: POLYMER PHYSICS2013, 51, 16–3, 2012.
[16] Ralf Hansch, Mohammad Rahul Reza Chowdhury, Norbert H. Menzler,
"Screen printing of sol–gel-derived electrolytes for solid oxide fuel cell
(SOFC) application", Ceramics International 35, 803–81, 2009.
[17]Haruyuki Okamuraa , Minoru Kayanokib , Kohei Takadab , Hideyuki
Nakajiric , Keiko Muramatsuc , Munenori Yamashitad and Masamitsu
Shiraia, "High‐resolution resist for screen printing: application to direct
fabrication of Ag circuit", Polym. Adv. Technol, 23 1151–1155, 2012.
[18] Eva Maria Janßena, Ralf Schliephacke, Armin Breitenbachc, Jörg
Breitkreutz, "Drug-printing by flexographic printing technology—A new
manufacturing process for orodispersible films", International Journal of
Pharmaceutics 441, 818–825, 2013. - 91 -
[19] D. Deganello, J.A. Cherry, D.T. Gethin, T.C. Claypole, "Patterning of
micro-scale conductive networks using reel-to-reel flexographic printing",
Thin Solid Films 518, 6113–6116, 2010.
[20] Ethan B. Secor, Sooman Lim, Heng Zhang, C. Daniel Frisbie, Lorraine F.
Francis and Mark C. Hersam, "Gravure Printing of Graphene for Large
Area Flexible Electronics", Adv. Mater., 26, 4533–4538, 2014.
[21] X. C. Shan, V. Sunappan, B. Salam and B. K. Lok, "Roll-to-Roll Gravure
Printing of Electric Heaters on Polymeric Substrates", IEEE 22nd
Electronics Packaging Technology Conference (EPTC), 2020.
[22] Yongkun Sui and Christian A. Zorman, "Review—Inkjet Printing of
Metal Structures for Electrochemical Sensor Applications", J. Electrochem.
Soc. 167 037571, 2020.
4322, 2015.
[23] An et al., "High‐resolution printing of 3D structures using an
electrohydrodynamic inkjet with multiple functional inks", Adv. Mater. 27,
[24] N. J. Wilkinson, M. A. A. Smith, R. W. Kay, R. A. Harris, "A review of
aerosol jet printing—a non-traditional hybrid process for micro
manufacturing", The International Journal of Advanced Manufacturing
Technology, 105:4599–4619, 2019.
[25] Padovani S, Sinesi S, Priante S, et al, "New method for headup display
realization by mean of chip on board and aerosol jet process", 3rd
Electronics System Integration Technology Conference (ESTC). IEEE, pp 1–- 92 -
3, 2010.
[26] Seifert T, Baum M, Roscher F, Wiemer M, Gessner T, "Aerosol jet
printing of nano particle based electrical chip interconnects", Mater Today
Proc 2:4262–4271, 2015.
[27] W. Yuanbin, Blache, & X. Xun, "Selection of additive manufacturing
processes" Rapid Prototyping Journal, Vol. 23, No. 2, pp. 434-447,
2017.
[28] https://www.hubs.com/
[29] https://optomec.com/
[30] G. McHale, C. V. Brown, M. I. Newton, G. G. Wells, and N. Sampara,
"Dielectrowetting Driven Spreading of Droplets", Phys. Rev. Lett. 107,
186101, 2011.