簡易檢索 / 詳目顯示

研究生: 張家榮
Chang, Chia-Jung
論文名稱: 多功能性奈米介孔隙材料及其奈米元件之設計與製造
The Design and Fabrication of Multifunctional Mesoporous Materials and Nano Devices
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 152
中文關鍵詞: 介孔隙奈米複合材料介電泳虛擬奈米孔道基因定序
外文關鍵詞: mesoporous, nanocomposite material, dielectrophoresis, virtual nanopore, DNA sequencing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開發一個具有奈米孔洞大小可操控性之奈米孔洞通透膜應用於生物檢體過濾技術或是在燃料電池中扮演質子交換膜減少燃料透過質子交換膜以及應用奈米孔洞完成之快速基因定律的操控系統是相當具有挑戰性的工作。此可控制之奈米孔洞大小不只可以藉由製造新的奈米孔隙材料來完成介孔隙物質,尚可以利用在次微米孔洞中加入不均勻電場所產生的介電泳力來控制粒子在其中的傳輸行為而形成一個虛擬奈米孔洞。藉由這些技術皆可以達到開發一個具有奈米孔洞大小可操控性之介孔洞元件或材料。
    我們開發了兩種主要的方法來完成這個控制奈米孔隙大小的工作:第一個方法是利用溶劑作為奈米孔洞的鑄造材料,藉由光化學來鍊結環氧樹酯材料以及控制在鍊結過程中的溶劑含量最後再將此作為鑄造模板的溶劑相移除,就可以製作出具有可控制性奈米孔隙大小的奈米孔隙材料。除此之外此環氧樹酯為了增強其機械強度還加入了具有垂直方向性的多壁奈米碳管來製作出具有高度方向性奈米複合材料,最後測是這個奈米複合材料具有高過於孔隙環氧樹酯113%的機械強度。此外為了增強其應用,在表面處理上也引入了使用254奈米的紫外光結合臭氧環境的表面氧化技術達到表面親水化的處理。此親水化處理不只可以應用於所製作的介孔隙材料應用上,尚且可以用於一般此類環氧樹酯所製作出的封閉式微流道系統的表面親水性改質。此表面改質方式經過驗證是屬於共價鍵的價接方式形成,將可以有效的延長表面處理的時效,使表面能夠形成一個更加穩定而親水的環境。
    除了這種利用環氧樹酯高分子溶劑控制的方式製作出的奈米孔隙材料,尚且開法出一個可以動態控制虛擬奈米孔隙的元件。在一個次微米的孔隙薄膜上,控制在此次微米孔道中的不均勻分布交流電場將會形成一個局部的介電泳效應,利用此介電泳效應將可以有效的控制此次微米孔道的開關大小。其可操控範圍將含跨40奈米到3奈米的尺度,這些控制皆由在奈米侷限空間中的介電泳效應所決定。此外此可控制之虛擬奈米孔道的技術將可以應用於控制去氧核醣核酸分子穿過奈米孔道進行快速基因定序的工作時的速度控制,藉由此虛擬奈米孔道將可以把去氧核醣核酸分子通過奈米孔道的速度減至0.615微米/秒,這個速度將可以讓基因定序以10千赫茲的頻率完成讀取,較傳統好上五倍的效率。
    本研究開發了兩種製作方式的可控制奈米孔隙平台及材料,製作出了一個具有高機械強度以及可控制表面特性以及奈米孔隙大小的高分子材料,以及利用次微米孔道中的介電泳效應來完成控制虛擬奈米通道的大小工作。這將更容易讓可控制的介孔隙整合到微流體系統。實驗結果顯示這兩種方式都可以有效的操控介孔隙的大小尺寸,因應不同的需求應用於生物檢體大小篩檢、燃料電池中使用的防止燃料擴散用的質子傳遞膜材料以及控制基因定序速度的工作。


    The controllable nanoporous material or device with highly functionality is very important issue for filtration application such as bio-sensor, rapid DNA sequence technology even the proton exchange membrane in fuel cell system. The controllable nanoporous can be realized by fabricating mesoporous material and controlling the pore size into a specific cut off range or by combine sub-micrometer solid state pore with dielectrophoresis force inside this nanoconfinement region and make this into a tunable virtual nanopore device.
    We have developed two controllable methods to realized the nanoporous structure. One is using solvent casting controlling technology when the epoxy based photoresist are crosslinked to generate a controllable mesoporous material. The cut off range for this mesoporous material is around 4 to 8nm depends on the solvent contain ratio. And in order to enhance the mechanical strength we composite this epoxy material with well aligned multi wall carbon nanotube to enhance the mechanical strength by 113%. Also develop a novel method for this epoxy based material surface modification and change this surface into hydrophilic property and enhance the mass transportation rate within mesoporous by UV/Ozone grafting technology. This UV/Ozone technology can not only apply to this mesoporous epoxy material but also to the embedded micro-channel made by this epoxy material.
    Another method is to create a solid state nanopore and controlling the dielectrophoresis inside this nanopore. By using this virtual nanopore device the pore size can be controlled from 40 nm down to 3nm by AC electric field used. Also this virtual nanopore can slow the DNA translocation speed through the nanopore device down to 0.615μm/s.
    In summary, we have developed a high mechanical and optical patternable mesoporous epoxy material with controllable nanopore size for bio-filtration and proton exchange membrane in fuel cell application. Also the electric field depended dielectrophoresis can act as a tunable virtual nanopore which is much easier to integrated with micro-fluidic chip system. Result shows that this two nanoporous material and device can be controlled the pore size easily and have many applications such as bio-filtration, proton exchange membrane, and controlling DNA translocation speed inside the nanochannel.

    CONTENTS ABSTRACT IN CHINESE…..………………………………………... i ABSTRACT………………………………………………………….....iv ACKNOWLEDGEMENTS……………………………………………vi CONTENTS…………………………………….……………………. ..vii LIST OF FIGURES………………………………………………….. ..xi CHAPTER I INTRODUCTION…………………………………………………1 1.1 Background and motivation…………………………………….1 CHAPTER II LITERATURE REVIEW……………………………………….10 2.1 Nanoporous Material Prepare Methods……………………….10 2.1.1 Method involve no pore-generating agents (porogen)… .10 2.1.2 Method use imprints to generate pores………………….12 2.1.3 Methods that include the use of a solvent as porogen…...13 2.1.4 Methods that involve 3D self assembly diblock copolymer……………………………………………………. .14 2.2 Nanocomposites polymer with carbon nanotubes…………….16 2.3 Surface modification technology on SU-8 Polymer Material…18 2.4 DEP manipulation on nano virtual pore device………………..20 CHAPTER III EXPERIMENTAL INSTRUMENTS AND PROCEDURES…..24 3.1 Experimental instruments……………………………………...24 3.1.1 Atomic force microscope (AFM)………………………..24 3.1.2 Field emission gun scanning electron microscope………26 3.1.3 Nano-indentation (NIP)...………………………………..27 3.1.4 RF sputter system………………………………………..31 3.1.5 High resolution X-ray photoelectron spectrometer (HRXPS)……………………………………………………….32 3.1.6 Fourier transform infrared spectroscopy (FTIR)………...34 3.1.7 Plasma enhanced chemical vapor deposition (PECVD)…35 3.1.8 Contact angle measurement……………………………...37 3.1.9 Focus ionic beam (FIB)………………………………….39 3.2Experiment procedures…………………………………………41 3.2.1 Nanoporous SU-8 make by solvent casting technology…41 3.2.2 FEGSEM characterization……………………………….45 3.2.3 AFM characterization……………………………………46 3.2.4 Fluorescent dye diffusion test…………………………....46 3.2.5 Molecule cross-over test…………………………………46 3.2.6 Nanoporous SU-8 crossover test by electrochemical detection method……………………………………………….47 3.2.7 SU-8 composites with aligned carbon nano tube………...48 3.2.8 Porosity measure using thickness measure technology….49 3.2.9 Measure the mechanical strength of multi-wall carbon nanotube composites with SU-8……………………………….51 3.2.10 Fabrication the nano-pores silicon nitride membrane by focus ionic beam etching………………………………………51 3.2.11 The setup for single molecular pass through virtual nano-pore arrays recording……………………………………53 CHAPTER IV FABRICATION OF NANOPOROUS SU-8 BY SOLVENT CASTING………………………………………………………….54 4.1 Solvent casting for SU-8 photo-resist and generate the nanoporous material………………………………………………...55 4.1.1 FESEM morphology result………………………………61 4.1.2 AFM characterization……………………………………61 4.1.3 Fluorescent dye diffusion test……………………………61 4.1.4 Molecule cross-over test…………………………………62 4.2 The SU-8 surface hydrophilic modification technique…..……..62 4.2.1 Contact angle measurements for different surface modifications with the UV/Ozone technology………………..68 4.2.2 HRXPS and FTIR analysis of the functional group after surface modification…………………………………………...69 4.2.3 Flow testing of the surface modification inside of a closed-channel SU-8…………………………………………..70 4.3 The mechanical strength of SU-8 nano-composites with carbon nano-tubes test……………………………………………………..72 4.3.1 Multi-wall carbon nano-tubes fabrication process………73 4.3.2 SU-8 composites with aligned multi-wall carbon nano-tubes (CNT)……………………………………………...76 4.3.3 Nano-indentation test for SU-8/CNT nanocomposites…..77 4.4 Result and discussion…………………………………………...79 4.4.1 The result of solvent casting for nano-porous SU-8 photo-resist……………………………………………………..79 4.4.2 The result of SU-8 surface hydrophilic modification technology……………………………………………………...91 4.4.3 The result of mechanical strength of SU-8 composites with carbon nano-tubes…………………………………………….101 4.4.4 The test result of the electrochemical method for multi functional nanoporous SU-8………………………………….108 CHAPTER V ARTIFICIAL VIRTUAL NANOPORE CONTROL BY DEP..114 5.1 Dielectrophoresis (DEP) generate principle………………….114 5.2 Virtual nano-pore device fabrication process…………………117 5.3 The simulation of the AC electric field and calculation of virtual pore size inside nano-channel……………………………………..119 5.4 Material Preparation…………………………………………..124 5.5 Fabrication result of virtual nano-pore device………………...125 5.6 Experiment setup for DNA molecular translocation manipulation………………………………………………………127 5.7 Result and discussion………………………………………….129 5.7.1 The simulation result of virtual nano-pore……………..129 5.7.2 Virtual pore for DNA moving speed control……………133 CHAPTER VI CONCLUSION…………………………………………………..139 REFERENCES……………………………………………………….141 LIST OF FIGURES Fig. 1-1 The application of microfluidic chamber combined with nanofilter for dialysis based fiber sensor………………………………..4 Fig. 2-1 Scanning electron micrographs of a porous PC hollow fiber by extraction method……………………………………………………….11 Fig. 2-2 Cross-section images of the hollow fiber membrane spun at different temperature…………………………………………………….11 Fig. 2-3 The molecular template imprint polymerization scheme………12 Fig. 2-4 The micelle as template imprint polymerization scheme……...13 Fig. 2-5 The solvent casting technology produce the pore size less than 100nm…………………………………………………………………..14 Fig. 2-6 The multi-block copolymer tended to self-assembly into 3D nano structure, include pore structure and lamellar structure………………..15 Fig. 2-7 The well dispersed carbon nanotubes attached to the substrate surface curing with SU-8 epoxy material………………………………17 Fig. 3-1 The atomic force microscope system setup and the operation method………………………………………………………………….25 Fig. 3-2 The field emission gun operate principle……………………...26 Fig. 3-3The loading stress-displacement curve recorded during nano indentation test………………………………………………………….29 Fig. 3-4 The typical RF sputtering equipment and the RF sputtering system which is used in this study………………………………………31 Fig. 3-5 The setup for X-ray photoelectron spectrum (XPS) system…...34 Fig. 3-6 The bottom-heated pancake vertical flow PECVD system setup…………………………………………………………………….37 Fig. 3-7 The liquid sample meets the solid and vapor phases..................38 Fig. 3-8 The working principle of focus ion beam……………………...39 Fig. 3-9 The monomer and photo-initiator inside EPON SU-8 system…41 Fig. 3-10 The schematic fabrication concepts of standard SU-8 and porous SU-8……………………………………………………………..43 Fig. 3-11 Fabrication process of micro patternable SU-8 nano filter and the setup for Rhodamine-B dye cross-over test…………………………44 Fig. 3-12 The experiment setup for electrochemical analysis to check the permeability ability……………………………………………………..48 Fig. 3-13 The procedure of SU-8 composite with aligned multi-wall CNT……………………………………………………………………..49 Fig. 3-14 The method for SU-8 porosity analysis from thickness change…………………………………………………………………...50 Fig. 3-15 The nano-pore array fabrication process……………………...52 Fig. 3-16 Experiment setup for fluorescence testing by virtual nano-pore device……………………………………………………………………53 Fig. 4-1 The three major parts inside SU-8 photo resist………………...56 Fig. 4-2 The schematic mesoporous SU-8 fabrication concepts………..58 Fig. 4-3 Fabrication process of nanofilteration SU-8 pattern………...…60 Fig. 4-4 The cross-linking mechanism of the SU-8 epoxy material…….66 Fig. 4-5 The experiment setup for 254nm UV/Ozone surface modification treatment………………………………………………………………..67 Fig. 4-6 The fabrication process for the enclosed SU-8 channel……….71 Fig. 4-7 The vapor-liquid-solid method for CNT growth mechanism….75 Fig. 4-8 The detail fabrication process of MWCNTs growth on silicon wafer…………………………………………………………………….75 Fig. 4-9 The fabrication process of SU-8 composites with vertical aligned CNTs…………………………………………………………………….77 Fig. 4-10 The NIP test process for aligned CNT composites with SU-8 film……………………………………………………………………...79 Fig. 4-11 The FESEM/AFM images of standard SU-8 and mesoporous SU-8……………………………………………………………………..80 Fig. 4-12 The fluorescence diffusion test result on standard SU-8 and mesoporous SU-8……………………………………………………….81 Fig. 4-13 The FESEM images of micro structured nano-filter…………84 Fig. 4-14 The molecule cross-over test result for nano porous filter with different size of molecule……………………………………………….87 Fig. 4-15 The time courses of fluorescent intensity for cross-over test of Rhodamine-B, Rh-B 10kD, and Rh-D 70kD……………………………88 Fig. 4-16 The pore size distribution of different solvent conatin EPON SU-8 system compare to Nafion 115……………………………………90 Fig. 4-17 The contact angles for different doses of surface modification on the SU-8 samples…………………………………………………….92 Fig. 4-18 The FTIR and HRXPS for the standard SU-8 and UV/ozone treated SU-8……………………………………………………………..95 Fig. 4-19 Suggested mechanism for C=O functional group formation on SU-8 surface…………………………………………………………….97 Fig. 4-20 The surface tension driven DI water flows into SU-8 micro-channel with UV/ozone inner surface treatment………………..100 Fig. 4-21 The FESEM images of SU-8 composites with MWCNTs…..102 Fig. 4-22 The hardness analysis for differentSU-8 nanocomposites materials……………………………………………………………….104 Fig. 4-23 The random and aligned dispersed CNTs inside SU-8 epoxy matrix………………………………………………………………….107 Fig. 4-24 The experiment setup for electrochemical test platform……109 Fig. 4-25 The I-t electrochemical analysis scanning at +0.6V………...111 Fig. 4-26 The C-V scanning at range -0.8V to +0,8V to check through standard SU-8 membrane…………………………………………...…112 Fig. 4-27 The C-V scanning at range 0.8V to +0,8V to check through mesoporous SU-8 membrane…………………………………………..113 Fig. 5-1 The move direction of particles and medium in positive and negative DEP conditions……………………………………………….116 Fig. 5-2 The fabrication process of virtual nano-pore device by FIB etching technology……………………………………………………..118 Fig. 5-3 The cross-section design of this virtual nano-pore device control by AC electric field inside the solid state nano-pore structure………...120 Fig. 5-4 The CFDRC simulation result for the E-field distribution inside the solid state nano-pore structure……………………………………..121 Fig. 5-5 The fabrication process and result of nanopore array devices by 5x5 arrays……………………………………………………………...126 Fig. 5-6 The experiment setup for recording the DNA translocation through virtual nano-pore device………………………………………128 Fig. 5-7 The CFDRC result under 1MHz frequency………………......129 Fig. 5-8 The AC electric field analysis in the middle region of the nano pore structure…………………………………………………………..130 Fig. 5-9 The size of vitual nano-pore which is controlled by different AC voltage applied at 1MHz………………………………………………132 Fig. 5-10 The three stages for single DNA molecule moving inside the DEP controlled virtual nano-pore region………………………………135 Fig. 5-11 The intensity analysis of λ-DNA penetrating nano-pore under EP and EP/DEP conditions…………………………………………….136

    [1]“High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)” E. Peled, V. Livshits, T. Duvdevani, Journal of Power Sources, 106 (2002) 245-248
    [2]“Synthesis, characterization and electrochemical transport properties of the poly (ethyleneglycol)-grafted poly (vinylidenefluoride) nanoporous membranes” Y. Liu, J.Y. Lee, E.T. Kang, P. Wang, K.L. Tan, Reactive Functional Polymer, 47 (2001) 201-213
    [3]“Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters” B. Krause, N.F.A. van der Vegt, M. Wessling, Desalination, 144 (2002) 5-7
    [4]“Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes” P.L. Drzal, A.F. Halasa, P. Kofinas, Polymer, 41 (2000) 4671-4677
    [5] “An artificial nanopore for molecular sensing” O.A. Saleh, L.L. Sohn, NanoLetters, 3 (2003) 37-38
    [6]“Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor” Y.M. Chung, H.K. Rhee, Catalys. Letters, 85 (2003) 159-164
    [7] “Design and characterization of nanoporous polymeric materials via reactive encapsulation of a chemically inert solvent” M.E. Toimil Molares, J. Brotz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, J. Vetter, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms, 185 (2001) 192-197
    [8] Y. K. Yoon, J. H. Park, F. Cros, M. G. Allen, IEEE MEMS (2003) 227-2303
    [9] Chang C-J, Tseng F-G and Yang C-S, NSTI Nanotech, 1 (2005) 296
    [10] “Biocompatibility and biofouling of MEMS drug delivery devices” Voskerician G, Shieve M. S., Shawgo R. S., von Recum H, Anderson J. M., Cima M. J. and Langer R, Biomaterials, 24 (2003) 1959
    [11] “Controlled n-type doping of AlN:Si films grown on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy,” Seet K. K., Juodkazis S, Jarutis V and Misawa H, Appl. Phys. Lett., 89 (2006) 024106
    [12] “Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices” S. K. Kamarudin, F. Achmad and W. R. W. Daud, Journal of Hydrogen Energy, 34, (2009) 6902-6916
    [13] “A review of water flooding issues in the proton exchange membrane fuel cell” X. Cheng, J. Zhang, Y. Tang, C. Song, J. Shen, D. Song, and J. Zhang, Journal of Power Sources, 167(2007) 103-117
    [14] “Experimental analysis of methanol cross-over in a direct methanol fuel cell” A. Casalegno , P. Grassini and R. Marchesi, Applied Thermal Engineering, 27, (2007) 748-754
    [15] “Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals” B. A. Holmberg, X. Wang and Y. Yan, Journal of Membrane Science, 320 (2008) 86-92
    [16] “A silicon-based bulk micromachined amperometric microelectrode biosensor with consecutive platinization and polymerization of pyrrole” Liu, J.; Bian, C.; Han, J.; Chen, S.; Xia, S. Sens. Actuators, B., 106 (2005) 591-601
    [17]“ Surface modification with self-assembled monolayers for nanoscale replication of photoplastic MEMS” Kim, G. M.; Kim, B.; Liebau, M.; Huskens, J.; Reinhoudt, D. N.; Brugger, J. J. Microelectromech. Syst., 11 (2002), 175-181.
    [18] “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS)” Zhang, J.; Tan, K. L.; Gong, H. Q. Polym. Test., 20 (2001), 693-701.
    [19] “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor” El-Ali, J.; Perch-Nielsen, I. R.; Poulsen, C. R.; Bang, D. D.; Telleman, P.; Wolff, A. Sens. Actuators, A,, 110 (2004), 3-10.
    [20] “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping” Wakamoto, Y.; Inoue, I.; Moriguchi, H.; Yasuda, K. Fresenius, J. Anal. Chem., 371, (2001) 276-281.
    [21] “Immobilisation of DNA to polymerised SU-8 photoresist” Marie, R.; Schmid, S.; Johansson, A.; Ejsing, L.; Nordstrom, M.; Hafliger, D.; Christensen, C.; Boisen, A.; Dufva, M. Biosens. Bioelectron., 21, (2006) 1327-1332.
    [22] “Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication” Nordstrom, M.; Marie, R.; Calleja, M.; Boisen, A. J. Micromech. Microeng., 14, (2004) 1614-1617
    [23] “Cross‐linked coatings for electrophoretic separations in poly (dimethylsiloxane) microchannels” Hu, S.; Ren, X.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L. Electrophoresis., 24,(2003) 3679-3688.
    [24] “Softlithography in biology and biochemistry” Whitesides, G. M.; Ostuni, E.; Shuichi, T.; Jiang, X.; Ingber, D. E. Annu. ReV. Biomed. Eng., 3, (2001) 335-373.
    [25] “Performance of SU-8 microchips as separation devices and comparison with glass microchips” T. Sikanen, L. Heikkila, S. Tuomikoski, R. A. Ketola, R. Kostianinen, S. Franssila, and T. Kotiaho. Anal. Chem., 79, (2007) 6255-6263
    [26] “A surface-tension-driven fluidic network for precise enzyme batch-dispensing and glucose detection” Tseng, F. G.; Lin, K. H.; Hsu, H. T.; Chieng, C. C. Sens. Actuators, A, 111, (2004) 107-117.
    [27] “Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication” Nordstrom, M.; Marie, R.; Calleja, M.; Boisen, A. J. Micromech. Microeng., 14, (2004) 1614-1617
    [28] “Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist”Yuli, W.; Mark, B.; Christopher, E. S.; G. P. Li.; Nancy L. A. Langmuir, 22, (2006) 2719-2725
    [29] “Single-molecule spectroscopy using nanoporous membranes” Guillaume A. T. Chansin., et al. Nano Letters., 7, (2007) 2901–2906
    [30] “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter”Gu. L., et al. Nature, 398, (1999) 686-690
    [31] “An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water” Blanca. H. Lapizco-Encinas., et al. J. Microbiological Methods, 62, (2005) 317-326
    [32] Y. K. Yoon, J. H. Park, F. Cros, M. G. Allen, IEEE MEMS (2003) 227-2303
    [33] “Structure development in oriented polyethylene films and microporous membranes as monitored by sound propagation” M. Raab, J. Scudla, A.G. Kozlov, V.K. Lavrentyev, G.K. Elyashevich, J. Appl. Polym. Sci., 80 (2001) 214-222
    [34] “Polycarbonate hollow fiber membranes by melt extrusion” H. Quan, S. Bernd, P. Dieter, J. Membr. Sci., 161 (1999) 287-291
    [35] “Operation parameters of melt spinning of polypropylene hollow fiber membranes” J.J. Kim, J.R. Hwang, U.Y. Kim, S.S. Kim, J. Membr. Sci., 108 (1995) 25-36
    [36] “Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method” J.J. Kim, T.S. Jang, Y.D. Kwon, U.Y. Kim, S.S. Kim, J. Membr. Sci., 93 (1994) 209-215
    [37] “Imprinted membranes for sensor technology: Opposite behavior of covalently and noncovalently imprinted membranes” S.A. Piletsky, E.V. Piletskaya, T.L. Panasyuk, A.V. El’skata, R. Levi, I. Karube, G. Wulff, Macromolecules, 31 (1998) 2137-2140
    [38] M. Yoshikawa, J. I. Izumi, T. Kitao, React. Funct. Polym., 42 (1999) 93-102
    [39] “Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique. 2. Influence of Coagulation Temperature in the Phase Inversion Process on the Encoding in Polymeric Membranes” H.Y. Wang, T. Kobayashi, T. Fukaya, N. Fujii, Langmuir, 13, (1997) 5396-5400
    [40] “Cross-linked porous polymer resins with reverse micellar imprints: Factors affecting the porosity of the polymers” X.X. Zhu, K. Banana, H.Y. Liu, M. Krause, M. Yang, Macromolecules, 32 (1999) 277-281
    [41] “Design and characterization of nanoporous polymeric materials via reactive encapsulation of a chemically inert solvent” V.I. Raman, G.R. Palmese, Colloids and Surfaces A: Physicochem. Eng. Aspects, 241 (2004) 119-125
    [42] “Block Copolymers for Nanomaterial Fabrication” M. Lazzari, M.A. Lopez-Quintela, Adv. Matter., 15 (2003) 1584-1594
    [43] “Nanoprocessing based on bicontinuous microdomains of block copolymers: nanochannels coated with metals” T. Hashimoto, K. Tsutsumi, and Y. Funaki, Langmuir, 13 (1997) 6869-6872
    [44] “Fabrication and properties of composites of poly (ethylene oxide) and functionalized carbon nanotubes” Geng HZ, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Adv. Mater., 14 (2002) 1387-1390
    [45] “Load transfer and deformation mechanism in carbon nanotube-polystyrene composites” Qian D, Dicky EC, Andrews R, Rantell T. Apply Phys. Letters, 76 (2000) 2868-2870
    [46] “Morphological and mechanical properties of carbon-nanotube-reinforced seicrystalline and amorphous polymer composites” Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ, Apply Phys. Letters, 81(2002) 5123-5125
    [47] “Poly (vinyl alcohol)/SWNT composite film” Zhang XF, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, NanoLetters, 3 (2003) 1285-1288
    [48] “Multifunctional carbon nanotube thin film composites by layer by layer” Zhang WD, Shen L, Phang IY, Liu T, Macromolecules , 37 (2004) 256-259
    [49] “Mechanical properties of carbon nanoparticle-reinforced elastomers” Frogley MD, Ravich D, Wagner DH, Compos. Sci. Technol., 63 (2003) 1647-1654
    [50] “Processing of polymer matrix nanocomposites with carbon nanotubes” Gong XY, Liu J, Baskaran S, Voise RD, Young JS., Chem. Mater., 12 (2000) 1049-1052
    [51] “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content” Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K., Compos. Sci. Technol., 64 (2004) 2363-2371
    [52] Andrew R, Jacques D, Minot M, Rantell T., Micro Mater Eng., 287 (2002) 395-403
    [53] “Carbon nanotubes reinforced Nylon-7 composite prepared by simple melt-compounding” Qian D, Dickey EC, Andrews R, Rantell T., Appl. Phys. Lett., 76 (2000) 2868-2870
    [54] “Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization” Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM, Chem. Mater, 15(2003) 4470-4475
    [55] “Buckling and collapse of embedded carbon nanotubes” Lourie O, Cox DM, Wagner HD, Phys. Rev. Lett., 81 (1998) 1638-1641
    [56] “Deformation of carbon nanotubes in nanotube-polymer composites” Bower C, Rosen R, Jin L, Han J, Zhou O. Appl. Phys. Lett., 74 (1997) 3317-3319
    [57] “SU-8: a low-cost negative resist for MEMS“ Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P..; Vettiger, M. J. Micromech. Microeng., 7 (1997) 121-124
    [58] “Evalution of MEMS materials of construction for implantable medical devices“ Kotar, G.; Freas, M.; Abel, P.; Fleischman, A.; Roy, S.; Zorman, C.; Moran, J. M.; Melzak, J. Biomaterials, 23 (2002) 2737-2750
    [59] “Biocompatibility and biofouling of MEMS drug delivery devices” Voskerician, G.; Shive, M. S.; Shawgo, R. S.; von Recum, H.; Anderson, J. M.; Cima, M. J.; Langer, R. Biomaterials, 24 (2003) 1959-1967
    [60]“Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review” Belanger, M. C.; Marois, Y. J. Biomed. Mater. Res., 58 (2001) 467-477
    [61] “Negative photoresistsfor optical lithography” Shaw, J. M.; Gelorme, J. D.; LaBianca, N. C.; Conley, W. E.; Holmes, S. J. IBM J. Res. Dev., 41 (1997) 81-94
    [62] “A silicon-based bulk micromachined amperometric microelectrode biosensor with consecutive platinization and polymerization of pyrrole” Liu, J.; Bian, C.; Han, J.; Chen, S.; Xia, S. Sens. Actuators, B, 106 (2005) 591-601.
    [63] “Surface modification with self-assembled monolayers for nanoscale replication of photoplastic MEMS“ Kim, G. M.; Kim, B.; Liebau, M.; Huskens, J.; Reinhoudt, D. N.; Brugger, J. J. Microelectromech. Syst., 11 (2002) 175-181.
    [64] “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS)” Zhang, J.; Tan, K. L.; Gong, H. Q. Polym. Test., 20 (2001) 693-701.
    [65] “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor” El-Ali, J.; Perch-Nielsen, I. R.; Poulsen, C. R.; Bang, D. D.; Telleman, P.; Wolff, A. Sens. Actuators, A, 110 (2004) 3-10.
    [66] “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping” Wakamoto, Y.; Inoue, I.; Moriguchi, H.; Yasuda, K. Fresenius, J. Anal. Chem., 371 (2001) 276-281.
    [67] “Immobilisation of DNA to polymerised SU-8 photoresist” Marie, R.; Schmid, S.; Johansson, A.; Ejsing, L.; Nordstrom, M.; Hafliger, D.; Christensen, C.; Boisen, A.; Dufva, M. Biosens. Bioelectron., 21 (2006) 1327-1332.
    [68] “Integrated fabrication of polymeric devices for biological applications” Kastantin, M. J.; Li, S.; Gadre, A. P.; Wu, L. Q.; Bentley, W. E.; Payne, G. F.; Rubloff, G. W.; Ghodssi, R. Sens. Mater., 15(2003) 295-301.
    [69] “A surface-tension-driven fluidic network for precise enzyme batch-dispensing and glucose detection” Tseng, F. G.; Lin, K. H.; Hsu, H. T.; Chieng, C. C. Sens. Actuators, A, 111(2004) 107-117.
    [70] “Integrated microfabricated systems including a purification module and an on-chip nano electrospray ionization interface for biological analysis” Carlier, J.; Arscott, S.; Thomy, V.; Camart, J. C.; Cren-Olive, C.; Le Gac, S. J. Chromatogr., A, 1071 (2005) 213-222.
    [71] “SU‐8 as a structural material for labs‐on‐chips and microelectromechanical systems” Nordstrom, M.; Marie, R.; Calleja, M.; Boisen, A. J. Micromech. Microeng., 14 (2004) 1614-1617
    [72] “Cross‐linked coatings for electrophoretic separations in poly (dimethylsiloxane) microchannels” Hu, S.; Ren, X.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L. Electrophoresis, 24(2003) 3679-3688.
    [73] “Soft lithography in biology and biochemistry” Whitesides, G. M.; Ostuni, E.; Shuichi, T.; Jiang, X.; Ingber, D. E. Annu. ReV. Biomed. Eng, 3 (2001)335-373.
    [74] “Multiple‐point electrochemical detection for a dual‐channel hybrid PDMS‐glass microchip electrophoresis device” T. Sikanen, L. Heikkila, S. Tuomikoski, R. A. Ketola, R. Kostianinen, S. Franssila, and T. Kotiaho. Anal. Chem., 79 (2007) 6255-6263
    [75] “Stability of the hydrophilic behavior of oxygen plasma activated SU-8” F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler and R. W. Stark,. J. Micromech. Microeng., 17 (2007) 524-531
    [76] “Surface hydrophilization of SU-8 by plasma and wet chemical processes” F. Walther, T. Drobek, A. M. Gigler, M. Hennemeyer, M. Kaiser, H. Herberg, T. Shimitsu, G. E. Morfill and R. W. Stark,. Surf. Interf. Anal., 2010, DOI: 10.1002/sia.3515
    [77] “Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers” Jan, G.; Kiril, E. Science, 290 (2000) 2130-2133
    [78] “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter” Gu, L., Braha, O., Conlan, S. Cheley, S. and Bayley, H. Nature, 398 (1999) 686-690
    [79] “Fast DNA translocation through a solid-state nanopore” Arnold J. Storm, Cornelis Storm, Jianghua Chen, Henny Zandbergen, Jean-Francois, and Cees Dekker, NanoLetters, 5 (2005) 1193-1197
    [80] “Controlling DNA capture and propagation through artificial nanopores” Eliane H. Trepagnier, Aleksandra Radenovic, David Sivak, Phillip Geissler, and Jan Liphardt, NanoLetters, 7 (2007) 2824-2830
    [81] “Separation of long DNA molecules in a microfabricated entropic trap array” J. Han, H. G.Craighead, Science, 288 (2000) 1026-1029
    [82] “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels” J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, Biophysical Journal, 90 (2006) 4538-4545
    [83] “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels” Christian H. Reccius, Samuel M. Stavis, John T. Mannion, Larry P.Walker, and H. G. Craighead, Biophysical Journal, 95 (2008) 273-286
    [84] “Entropic trapping and escape of long DNA molecules at submicron size constriction” J. Han, S. W. Turner, and H. G. Craighead, Physical Review Letters, 23 (1999) 1688-1691
    [85] “Kramers problem for a polymer in a double well” K. L. Sebastian and Alok K. R. Paul, Physical Review E, 62 (2000) 927-939
    [86] U.Zimmermann, G.A. Neil, Electromanipulation of cells, CRC Press, Boca Raton, FL. 1996
    [87]“Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration” C-J Chang, C-S Yang, Y-J Chuang, H-S Khoo, and F-G Tseng, Nanotechnology, 19 (2008) 365301
    [88] Reed-Hill R E 1999 Physical Metallurgy Principles 3rd edn (Boston, MA: PWS Publishing)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE