研究生: |
張家榮 Chang, Chia-Jung |
---|---|
論文名稱: |
多功能性奈米介孔隙材料及其奈米元件之設計與製造 The Design and Fabrication of Multifunctional Mesoporous Materials and Nano Devices |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 152 |
中文關鍵詞: | 介孔隙 、奈米複合材料 、介電泳 、虛擬奈米孔道 、基因定序 |
外文關鍵詞: | mesoporous, nanocomposite material, dielectrophoresis, virtual nanopore, DNA sequencing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
開發一個具有奈米孔洞大小可操控性之奈米孔洞通透膜應用於生物檢體過濾技術或是在燃料電池中扮演質子交換膜減少燃料透過質子交換膜以及應用奈米孔洞完成之快速基因定律的操控系統是相當具有挑戰性的工作。此可控制之奈米孔洞大小不只可以藉由製造新的奈米孔隙材料來完成介孔隙物質,尚可以利用在次微米孔洞中加入不均勻電場所產生的介電泳力來控制粒子在其中的傳輸行為而形成一個虛擬奈米孔洞。藉由這些技術皆可以達到開發一個具有奈米孔洞大小可操控性之介孔洞元件或材料。
我們開發了兩種主要的方法來完成這個控制奈米孔隙大小的工作:第一個方法是利用溶劑作為奈米孔洞的鑄造材料,藉由光化學來鍊結環氧樹酯材料以及控制在鍊結過程中的溶劑含量最後再將此作為鑄造模板的溶劑相移除,就可以製作出具有可控制性奈米孔隙大小的奈米孔隙材料。除此之外此環氧樹酯為了增強其機械強度還加入了具有垂直方向性的多壁奈米碳管來製作出具有高度方向性奈米複合材料,最後測是這個奈米複合材料具有高過於孔隙環氧樹酯113%的機械強度。此外為了增強其應用,在表面處理上也引入了使用254奈米的紫外光結合臭氧環境的表面氧化技術達到表面親水化的處理。此親水化處理不只可以應用於所製作的介孔隙材料應用上,尚且可以用於一般此類環氧樹酯所製作出的封閉式微流道系統的表面親水性改質。此表面改質方式經過驗證是屬於共價鍵的價接方式形成,將可以有效的延長表面處理的時效,使表面能夠形成一個更加穩定而親水的環境。
除了這種利用環氧樹酯高分子溶劑控制的方式製作出的奈米孔隙材料,尚且開法出一個可以動態控制虛擬奈米孔隙的元件。在一個次微米的孔隙薄膜上,控制在此次微米孔道中的不均勻分布交流電場將會形成一個局部的介電泳效應,利用此介電泳效應將可以有效的控制此次微米孔道的開關大小。其可操控範圍將含跨40奈米到3奈米的尺度,這些控制皆由在奈米侷限空間中的介電泳效應所決定。此外此可控制之虛擬奈米孔道的技術將可以應用於控制去氧核醣核酸分子穿過奈米孔道進行快速基因定序的工作時的速度控制,藉由此虛擬奈米孔道將可以把去氧核醣核酸分子通過奈米孔道的速度減至0.615微米/秒,這個速度將可以讓基因定序以10千赫茲的頻率完成讀取,較傳統好上五倍的效率。
本研究開發了兩種製作方式的可控制奈米孔隙平台及材料,製作出了一個具有高機械強度以及可控制表面特性以及奈米孔隙大小的高分子材料,以及利用次微米孔道中的介電泳效應來完成控制虛擬奈米通道的大小工作。這將更容易讓可控制的介孔隙整合到微流體系統。實驗結果顯示這兩種方式都可以有效的操控介孔隙的大小尺寸,因應不同的需求應用於生物檢體大小篩檢、燃料電池中使用的防止燃料擴散用的質子傳遞膜材料以及控制基因定序速度的工作。
The controllable nanoporous material or device with highly functionality is very important issue for filtration application such as bio-sensor, rapid DNA sequence technology even the proton exchange membrane in fuel cell system. The controllable nanoporous can be realized by fabricating mesoporous material and controlling the pore size into a specific cut off range or by combine sub-micrometer solid state pore with dielectrophoresis force inside this nanoconfinement region and make this into a tunable virtual nanopore device.
We have developed two controllable methods to realized the nanoporous structure. One is using solvent casting controlling technology when the epoxy based photoresist are crosslinked to generate a controllable mesoporous material. The cut off range for this mesoporous material is around 4 to 8nm depends on the solvent contain ratio. And in order to enhance the mechanical strength we composite this epoxy material with well aligned multi wall carbon nanotube to enhance the mechanical strength by 113%. Also develop a novel method for this epoxy based material surface modification and change this surface into hydrophilic property and enhance the mass transportation rate within mesoporous by UV/Ozone grafting technology. This UV/Ozone technology can not only apply to this mesoporous epoxy material but also to the embedded micro-channel made by this epoxy material.
Another method is to create a solid state nanopore and controlling the dielectrophoresis inside this nanopore. By using this virtual nanopore device the pore size can be controlled from 40 nm down to 3nm by AC electric field used. Also this virtual nanopore can slow the DNA translocation speed through the nanopore device down to 0.615μm/s.
In summary, we have developed a high mechanical and optical patternable mesoporous epoxy material with controllable nanopore size for bio-filtration and proton exchange membrane in fuel cell application. Also the electric field depended dielectrophoresis can act as a tunable virtual nanopore which is much easier to integrated with micro-fluidic chip system. Result shows that this two nanoporous material and device can be controlled the pore size easily and have many applications such as bio-filtration, proton exchange membrane, and controlling DNA translocation speed inside the nanochannel.
[1]“High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)” E. Peled, V. Livshits, T. Duvdevani, Journal of Power Sources, 106 (2002) 245-248
[2]“Synthesis, characterization and electrochemical transport properties of the poly (ethyleneglycol)-grafted poly (vinylidenefluoride) nanoporous membranes” Y. Liu, J.Y. Lee, E.T. Kang, P. Wang, K.L. Tan, Reactive Functional Polymer, 47 (2001) 201-213
[3]“Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters” B. Krause, N.F.A. van der Vegt, M. Wessling, Desalination, 144 (2002) 5-7
[4]“Microstructure orientation and nanoporous gas transport in semicrystalline block copolymer membranes” P.L. Drzal, A.F. Halasa, P. Kofinas, Polymer, 41 (2000) 4671-4677
[5] “An artificial nanopore for molecular sensing” O.A. Saleh, L.L. Sohn, NanoLetters, 3 (2003) 37-38
[6]“Pt-Pd bimetallic nanoparticles encapsulated in dendrimer nanoreactor” Y.M. Chung, H.K. Rhee, Catalys. Letters, 85 (2003) 159-164
[7] “Design and characterization of nanoporous polymeric materials via reactive encapsulation of a chemically inert solvent” M.E. Toimil Molares, J. Brotz, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.U. Schuchert, C. Trautmann, J. Vetter, Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. Atoms, 185 (2001) 192-197
[8] Y. K. Yoon, J. H. Park, F. Cros, M. G. Allen, IEEE MEMS (2003) 227-2303
[9] Chang C-J, Tseng F-G and Yang C-S, NSTI Nanotech, 1 (2005) 296
[10] “Biocompatibility and biofouling of MEMS drug delivery devices” Voskerician G, Shieve M. S., Shawgo R. S., von Recum H, Anderson J. M., Cima M. J. and Langer R, Biomaterials, 24 (2003) 1959
[11] “Controlled n-type doping of AlN:Si films grown on 6H-SiC(0001) by plasma-assisted molecular beam epitaxy,” Seet K. K., Juodkazis S, Jarutis V and Misawa H, Appl. Phys. Lett., 89 (2006) 024106
[12] “Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices” S. K. Kamarudin, F. Achmad and W. R. W. Daud, Journal of Hydrogen Energy, 34, (2009) 6902-6916
[13] “A review of water flooding issues in the proton exchange membrane fuel cell” X. Cheng, J. Zhang, Y. Tang, C. Song, J. Shen, D. Song, and J. Zhang, Journal of Power Sources, 167(2007) 103-117
[14] “Experimental analysis of methanol cross-over in a direct methanol fuel cell” A. Casalegno , P. Grassini and R. Marchesi, Applied Thermal Engineering, 27, (2007) 748-754
[15] “Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals” B. A. Holmberg, X. Wang and Y. Yan, Journal of Membrane Science, 320 (2008) 86-92
[16] “A silicon-based bulk micromachined amperometric microelectrode biosensor with consecutive platinization and polymerization of pyrrole” Liu, J.; Bian, C.; Han, J.; Chen, S.; Xia, S. Sens. Actuators, B., 106 (2005) 591-601
[17]“ Surface modification with self-assembled monolayers for nanoscale replication of photoplastic MEMS” Kim, G. M.; Kim, B.; Liebau, M.; Huskens, J.; Reinhoudt, D. N.; Brugger, J. J. Microelectromech. Syst., 11 (2002), 175-181.
[18] “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS)” Zhang, J.; Tan, K. L.; Gong, H. Q. Polym. Test., 20 (2001), 693-701.
[19] “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor” El-Ali, J.; Perch-Nielsen, I. R.; Poulsen, C. R.; Bang, D. D.; Telleman, P.; Wolff, A. Sens. Actuators, A,, 110 (2004), 3-10.
[20] “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping” Wakamoto, Y.; Inoue, I.; Moriguchi, H.; Yasuda, K. Fresenius, J. Anal. Chem., 371, (2001) 276-281.
[21] “Immobilisation of DNA to polymerised SU-8 photoresist” Marie, R.; Schmid, S.; Johansson, A.; Ejsing, L.; Nordstrom, M.; Hafliger, D.; Christensen, C.; Boisen, A.; Dufva, M. Biosens. Bioelectron., 21, (2006) 1327-1332.
[22] “Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication” Nordstrom, M.; Marie, R.; Calleja, M.; Boisen, A. J. Micromech. Microeng., 14, (2004) 1614-1617
[23] “Cross‐linked coatings for electrophoretic separations in poly (dimethylsiloxane) microchannels” Hu, S.; Ren, X.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L. Electrophoresis., 24,(2003) 3679-3688.
[24] “Softlithography in biology and biochemistry” Whitesides, G. M.; Ostuni, E.; Shuichi, T.; Jiang, X.; Ingber, D. E. Annu. ReV. Biomed. Eng., 3, (2001) 335-373.
[25] “Performance of SU-8 microchips as separation devices and comparison with glass microchips” T. Sikanen, L. Heikkila, S. Tuomikoski, R. A. Ketola, R. Kostianinen, S. Franssila, and T. Kotiaho. Anal. Chem., 79, (2007) 6255-6263
[26] “A surface-tension-driven fluidic network for precise enzyme batch-dispensing and glucose detection” Tseng, F. G.; Lin, K. H.; Hsu, H. T.; Chieng, C. C. Sens. Actuators, A, 111, (2004) 107-117.
[27] “Rendering SU-8 hydrophilic to facilitate use in micro channel fabrication” Nordstrom, M.; Marie, R.; Calleja, M.; Boisen, A. J. Micromech. Microeng., 14, (2004) 1614-1617
[28] “Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist”Yuli, W.; Mark, B.; Christopher, E. S.; G. P. Li.; Nancy L. A. Langmuir, 22, (2006) 2719-2725
[29] “Single-molecule spectroscopy using nanoporous membranes” Guillaume A. T. Chansin., et al. Nano Letters., 7, (2007) 2901–2906
[30] “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter”Gu. L., et al. Nature, 398, (1999) 686-690
[31] “An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water” Blanca. H. Lapizco-Encinas., et al. J. Microbiological Methods, 62, (2005) 317-326
[32] Y. K. Yoon, J. H. Park, F. Cros, M. G. Allen, IEEE MEMS (2003) 227-2303
[33] “Structure development in oriented polyethylene films and microporous membranes as monitored by sound propagation” M. Raab, J. Scudla, A.G. Kozlov, V.K. Lavrentyev, G.K. Elyashevich, J. Appl. Polym. Sci., 80 (2001) 214-222
[34] “Polycarbonate hollow fiber membranes by melt extrusion” H. Quan, S. Bernd, P. Dieter, J. Membr. Sci., 161 (1999) 287-291
[35] “Operation parameters of melt spinning of polypropylene hollow fiber membranes” J.J. Kim, J.R. Hwang, U.Y. Kim, S.S. Kim, J. Membr. Sci., 108 (1995) 25-36
[36] “Structural study of microporous polypropylene hollow fiber membranes made by the melt-spinning and cold-stretching method” J.J. Kim, T.S. Jang, Y.D. Kwon, U.Y. Kim, S.S. Kim, J. Membr. Sci., 93 (1994) 209-215
[37] “Imprinted membranes for sensor technology: Opposite behavior of covalently and noncovalently imprinted membranes” S.A. Piletsky, E.V. Piletskaya, T.L. Panasyuk, A.V. El’skata, R. Levi, I. Karube, G. Wulff, Macromolecules, 31 (1998) 2137-2140
[38] M. Yoshikawa, J. I. Izumi, T. Kitao, React. Funct. Polym., 42 (1999) 93-102
[39] “Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique. 2. Influence of Coagulation Temperature in the Phase Inversion Process on the Encoding in Polymeric Membranes” H.Y. Wang, T. Kobayashi, T. Fukaya, N. Fujii, Langmuir, 13, (1997) 5396-5400
[40] “Cross-linked porous polymer resins with reverse micellar imprints: Factors affecting the porosity of the polymers” X.X. Zhu, K. Banana, H.Y. Liu, M. Krause, M. Yang, Macromolecules, 32 (1999) 277-281
[41] “Design and characterization of nanoporous polymeric materials via reactive encapsulation of a chemically inert solvent” V.I. Raman, G.R. Palmese, Colloids and Surfaces A: Physicochem. Eng. Aspects, 241 (2004) 119-125
[42] “Block Copolymers for Nanomaterial Fabrication” M. Lazzari, M.A. Lopez-Quintela, Adv. Matter., 15 (2003) 1584-1594
[43] “Nanoprocessing based on bicontinuous microdomains of block copolymers: nanochannels coated with metals” T. Hashimoto, K. Tsutsumi, and Y. Funaki, Langmuir, 13 (1997) 6869-6872
[44] “Fabrication and properties of composites of poly (ethylene oxide) and functionalized carbon nanotubes” Geng HZ, Rosen R, Zheng B, Shimoda H, Fleming L, Liu J, Adv. Mater., 14 (2002) 1387-1390
[45] “Load transfer and deformation mechanism in carbon nanotube-polystyrene composites” Qian D, Dicky EC, Andrews R, Rantell T. Apply Phys. Letters, 76 (2000) 2868-2870
[46] “Morphological and mechanical properties of carbon-nanotube-reinforced seicrystalline and amorphous polymer composites” Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ, Apply Phys. Letters, 81(2002) 5123-5125
[47] “Poly (vinyl alcohol)/SWNT composite film” Zhang XF, Liu T, Sreekumar TV, Kumar S, Moore VC, Hauge RH, NanoLetters, 3 (2003) 1285-1288
[48] “Multifunctional carbon nanotube thin film composites by layer by layer” Zhang WD, Shen L, Phang IY, Liu T, Macromolecules , 37 (2004) 256-259
[49] “Mechanical properties of carbon nanoparticle-reinforced elastomers” Frogley MD, Ravich D, Wagner DH, Compos. Sci. Technol., 63 (2003) 1647-1654
[50] “Processing of polymer matrix nanocomposites with carbon nanotubes” Gong XY, Liu J, Baskaran S, Voise RD, Young JS., Chem. Mater., 12 (2000) 1049-1052
[51] “Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content” Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K., Compos. Sci. Technol., 64 (2004) 2363-2371
[52] Andrew R, Jacques D, Minot M, Rantell T., Micro Mater Eng., 287 (2002) 395-403
[53] “Carbon nanotubes reinforced Nylon-7 composite prepared by simple melt-compounding” Qian D, Dickey EC, Andrews R, Rantell T., Appl. Phys. Lett., 76 (2000) 2868-2870
[54] “Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization” Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM, Chem. Mater, 15(2003) 4470-4475
[55] “Buckling and collapse of embedded carbon nanotubes” Lourie O, Cox DM, Wagner HD, Phys. Rev. Lett., 81 (1998) 1638-1641
[56] “Deformation of carbon nanotubes in nanotube-polymer composites” Bower C, Rosen R, Jin L, Han J, Zhou O. Appl. Phys. Lett., 74 (1997) 3317-3319
[57] “SU-8: a low-cost negative resist for MEMS“ Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P..; Vettiger, M. J. Micromech. Microeng., 7 (1997) 121-124
[58] “Evalution of MEMS materials of construction for implantable medical devices“ Kotar, G.; Freas, M.; Abel, P.; Fleischman, A.; Roy, S.; Zorman, C.; Moran, J. M.; Melzak, J. Biomaterials, 23 (2002) 2737-2750
[59] “Biocompatibility and biofouling of MEMS drug delivery devices” Voskerician, G.; Shive, M. S.; Shawgo, R. S.; von Recum, H.; Anderson, J. M.; Cima, M. J.; Langer, R. Biomaterials, 24 (2003) 1959-1967
[60]“Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: a review” Belanger, M. C.; Marois, Y. J. Biomed. Mater. Res., 58 (2001) 467-477
[61] “Negative photoresistsfor optical lithography” Shaw, J. M.; Gelorme, J. D.; LaBianca, N. C.; Conley, W. E.; Holmes, S. J. IBM J. Res. Dev., 41 (1997) 81-94
[62] “A silicon-based bulk micromachined amperometric microelectrode biosensor with consecutive platinization and polymerization of pyrrole” Liu, J.; Bian, C.; Han, J.; Chen, S.; Xia, S. Sens. Actuators, B, 106 (2005) 591-601.
[63] “Surface modification with self-assembled monolayers for nanoscale replication of photoplastic MEMS“ Kim, G. M.; Kim, B.; Liebau, M.; Huskens, J.; Reinhoudt, D. N.; Brugger, J. J. Microelectromech. Syst., 11 (2002) 175-181.
[64] “Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS)” Zhang, J.; Tan, K. L.; Gong, H. Q. Polym. Test., 20 (2001) 693-701.
[65] “Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor” El-Ali, J.; Perch-Nielsen, I. R.; Poulsen, C. R.; Bang, D. D.; Telleman, P.; Wolff, A. Sens. Actuators, A, 110 (2004) 3-10.
[66] “Analysis of single-cell differences by use of an on-chip microculture system and optical trapping” Wakamoto, Y.; Inoue, I.; Moriguchi, H.; Yasuda, K. Fresenius, J. Anal. Chem., 371 (2001) 276-281.
[67] “Immobilisation of DNA to polymerised SU-8 photoresist” Marie, R.; Schmid, S.; Johansson, A.; Ejsing, L.; Nordstrom, M.; Hafliger, D.; Christensen, C.; Boisen, A.; Dufva, M. Biosens. Bioelectron., 21 (2006) 1327-1332.
[68] “Integrated fabrication of polymeric devices for biological applications” Kastantin, M. J.; Li, S.; Gadre, A. P.; Wu, L. Q.; Bentley, W. E.; Payne, G. F.; Rubloff, G. W.; Ghodssi, R. Sens. Mater., 15(2003) 295-301.
[69] “A surface-tension-driven fluidic network for precise enzyme batch-dispensing and glucose detection” Tseng, F. G.; Lin, K. H.; Hsu, H. T.; Chieng, C. C. Sens. Actuators, A, 111(2004) 107-117.
[70] “Integrated microfabricated systems including a purification module and an on-chip nano electrospray ionization interface for biological analysis” Carlier, J.; Arscott, S.; Thomy, V.; Camart, J. C.; Cren-Olive, C.; Le Gac, S. J. Chromatogr., A, 1071 (2005) 213-222.
[71] “SU‐8 as a structural material for labs‐on‐chips and microelectromechanical systems” Nordstrom, M.; Marie, R.; Calleja, M.; Boisen, A. J. Micromech. Microeng., 14 (2004) 1614-1617
[72] “Cross‐linked coatings for electrophoretic separations in poly (dimethylsiloxane) microchannels” Hu, S.; Ren, X.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L. Electrophoresis, 24(2003) 3679-3688.
[73] “Soft lithography in biology and biochemistry” Whitesides, G. M.; Ostuni, E.; Shuichi, T.; Jiang, X.; Ingber, D. E. Annu. ReV. Biomed. Eng, 3 (2001)335-373.
[74] “Multiple‐point electrochemical detection for a dual‐channel hybrid PDMS‐glass microchip electrophoresis device” T. Sikanen, L. Heikkila, S. Tuomikoski, R. A. Ketola, R. Kostianinen, S. Franssila, and T. Kotiaho. Anal. Chem., 79 (2007) 6255-6263
[75] “Stability of the hydrophilic behavior of oxygen plasma activated SU-8” F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A. M. Gigler and R. W. Stark,. J. Micromech. Microeng., 17 (2007) 524-531
[76] “Surface hydrophilization of SU-8 by plasma and wet chemical processes” F. Walther, T. Drobek, A. M. Gigler, M. Hennemeyer, M. Kaiser, H. Herberg, T. Shimitsu, G. E. Morfill and R. W. Stark,. Surf. Interf. Anal., 2010, DOI: 10.1002/sia.3515
[77] “Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers” Jan, G.; Kiril, E. Science, 290 (2000) 2130-2133
[78] “Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter” Gu, L., Braha, O., Conlan, S. Cheley, S. and Bayley, H. Nature, 398 (1999) 686-690
[79] “Fast DNA translocation through a solid-state nanopore” Arnold J. Storm, Cornelis Storm, Jianghua Chen, Henny Zandbergen, Jean-Francois, and Cees Dekker, NanoLetters, 5 (2005) 1193-1197
[80] “Controlling DNA capture and propagation through artificial nanopores” Eliane H. Trepagnier, Aleksandra Radenovic, David Sivak, Phillip Geissler, and Jan Liphardt, NanoLetters, 7 (2007) 2824-2830
[81] “Separation of long DNA molecules in a microfabricated entropic trap array” J. Han, H. G.Craighead, Science, 288 (2000) 1026-1029
[82] “Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels” J. T. Mannion, C. H. Reccius, J. D. Cross, and H. G. Craighead, Biophysical Journal, 90 (2006) 4538-4545
[83] “Conformation, length, and speed measurements of electrodynamically stretched DNA in nanochannels” Christian H. Reccius, Samuel M. Stavis, John T. Mannion, Larry P.Walker, and H. G. Craighead, Biophysical Journal, 95 (2008) 273-286
[84] “Entropic trapping and escape of long DNA molecules at submicron size constriction” J. Han, S. W. Turner, and H. G. Craighead, Physical Review Letters, 23 (1999) 1688-1691
[85] “Kramers problem for a polymer in a double well” K. L. Sebastian and Alok K. R. Paul, Physical Review E, 62 (2000) 927-939
[86] U.Zimmermann, G.A. Neil, Electromanipulation of cells, CRC Press, Boca Raton, FL. 1996
[87]“Micro-patternable nanoporous polymer integrated with microstructures for molecular filtration” C-J Chang, C-S Yang, Y-J Chuang, H-S Khoo, and F-G Tseng, Nanotechnology, 19 (2008) 365301
[88] Reed-Hill R E 1999 Physical Metallurgy Principles 3rd edn (Boston, MA: PWS Publishing)