研究生: |
陳奕欽 |
---|---|
論文名稱: |
強化染料敏化太陽能電池中氧化鋅電極的光電轉換效率 Enhanced Energy Conversion Efficiency of ZnO Dye-Sensitized Solar Cell |
指導教授: |
開執中
陳福榮 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 染料敏化太陽能電池 、氧化鋅 |
外文關鍵詞: | DSSC, ZnO |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本研究中討論工作電極、染料、以及電解質等研究方向,分別設計一系列的實驗並建立研究方法。工作電極方面以噴霧成膜及刮刀成膜法產生氧化鋅多孔膜電極於導電玻璃上,應用於染料敏化太陽能電池,並討論氧化鋅薄膜製作方式、晶相及膜厚的影響。刮刀成膜法對於製作工作電極而言,是比較便利,且容易控制參數,若搭配適當的漿料比例,可以得到較均勻且完整性高的工作電極。
氧化鋅染料敏化太陽能電池中,氧化鋅會和Ru錯化合物的染料會產生複合產物,導致光電轉換效率降低。所以本實驗利用縮短浸泡染料的時間,減低形成複合產物,得到最好的光電轉換效率。
最後以DSSC結構為基礎,而使用半導體量子點(Quantum Dot)強化染料敏化太陽能電池的光電轉換效率,利用量子點來增強染料的吸收光波長範圍,以增加染料敏化太陽能電池的光電轉換效率。將量子點直接組裝在氧化鋅表面,並且由SEM、TEM影像觀察其連結情形,最後以太陽能電池J-V特性、IPCE數據量測來證明其增強染料敏化太陽能電池的效果。
參考文獻
1. M. Grätzel, “Photoelectrochemical cells” Nature 2001(414) 338-344
2. M. Grätzel, “Powering the planet” Nature 2000(403) 363
3. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am. Chem. Soc. 1988, 110, 1216.
4. Grätzel, M. Inorg. Chem. 2005, 44, 6841.
5. Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338.
6. Yanagida, S. C. R. Chimie 2006, 9, 597.
7. Grätzel, M. C. R. Chimie 2006, 9, 578.
8. “Handbook of Photovoltaic Science and Engineering”, Ed. By Antonio Luque and Steven Hegedus, John Wiley & Sons, 2003.
9. 經濟部太陽光電示範系統資訊網
http://210.69.121.54/moea/Docs/index.html
10. 黃建昇﹐結晶矽太陽電池發展近況﹐工業材料雜誌 2003﹐203期﹐150.
11. 郭明村﹐薄膜太陽電池發展近況﹐工業材料雜誌 2003﹐203期﹐138.
12. 楊素華, 蔡泰成, 科學發展 390,50(2005)
13. S.Guha et al, Appl.Phys.Lett 1999,74,1860
14. Antonio Luaue and Steven Hegedus, Handbook of photovoltaic Science and Enginnering, 2004
15. M.K. Nazeeruddin, A.Kay, I.Rodicio, R Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, and M. Grätzel, J.Am.Chem.Soc.115,6382(1993)
16. B. O’Regan, M. Grätzel, “A low, high-efficiency solar cell based on dye-sensiized colloidal TiO2 films.” Nature, Vol. 353, Oct 24 1991.
17. M. A. Green, K. Emery, D. L. King, Y. Hishikawa, W. Warta, Prog. Photovol.: Res. Appl. 2006, 14, 455.
18. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
19. M. Grätzel, J. Photochem. Photobiol. C 2003, 4, 145.
20. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 2003, 82, 3901.
21. T. Dittrich, E. A. Lebedev, J. Weidmann, Phys. Status Solidi A: RRN 1998, 165, R5.
22. Yuji Matsumoto, Makoto Murakami, Tomoji Shono,Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki,Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara,Hideomi Koinuma1,Science 291,854 (2001).
23. 半導體元件物理與應用,張俊彥譯,施敏著.
24. H.J.Ko, Y.F.Chen, S.K.Hong, H.Wenisch, T. Yao, Appl. Phys. Lett .77, 3761 (2000).
25. Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma ,Y. Segawa, Appl. Phys. Lett .72, 3270 (1998).
26. D.C.Reynolds, D.C.Lock ,SolidState Commun.99, 873 (1996).
27. D.M.Bagnall,Y.F.Chen, Z.Zhu,T.Yao,S.Koyama,M.Y.Shen,T.Goto, Appl. Phys. Lett .70, 2230 (1997).
28. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan,Yiying Wu,Hannes Kind, Eicke Weber, Richard Russo,Peidong Yang,Science 298, 1897 (2001).
29. Numerical Data and Functional Relationships in Science and Technology./v/22 Subvolume a. Intrinsic Properties of Group IV Elements and III-V,II-IV and I-VII Compound,Berlin: /Springer- Verlag,/1987
30. M.Joseph, H.Tabata, T.Kawai, Jpn. J. Appl. Phys. 238, 2505 (1999).
31. R. L. Hoffman, Appl. Phys. Lett. 82, 733 (2003).
32. W.S.Hu,Z.G.Liu,R.X.Wu,Y-F Chen,W.Ji,T.Yu,d.Feng, Appl. Phys. Lett.71, 548 (1997).
33. S.Ezhilvalavan,T,R,N,Kutty, Appl. phys. Lett. 69, 3540 (1996).
34. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci,A. Selloni, G. Viscardi,P. Liska, S. Ito, B. Takeru, and M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835.
35. F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 1940(44) 865-873
36. 萬海保,曹立新,王麗穎,曾廣賦,席時權, “染料敏化的TiO2納米晶多孔膜的性質及其光電轉換” 化學通報 1999(6)
37. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell” Nature 1976(261) 402
38. Park et al., “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells” J. Phys. Chem. B 2000(104) 8989-8994
39. Park et al., “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4” J. Phys. Chem. B 1999(103) 3308-3314
40. S. Ito et al., “Facilefabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating” Sol. Energy Mater. Sol. Cells 2003(76) 3-13
41. S. Nakade et al., “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells” J. Phys. Chem. B 2002(106) 10004-10010
42. G. Redmond et al., “Visible light sensitization by cis-Bis(thiocyanato) -bis(2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques” Chem. Mater. 1994(6) 686-691
43. P. Hoyer and H. Weller, “Potential-dependent electron injection in nanoporous colloidal ZnO films” J. Phys. Chem. 1995(99) 14096-14100
44. Pauportĕ et al., “Electrochemical growth of epitaxial Eosin/ZnO hybrid films” J. Phys. Chem. B 2003(107) 10077-10082
45. Oekermann et al., “Electron transfer and back reaction in electrochemically self assenibled nanoporous ZnO/dye hybrid films” J. Phys. Chem. B 2004(108) 8364-8370
46. K. Keis et al.“Nanostructured ZnO electrodes for dye-sensitized solar cell applications”J. Photochem. Photobiol. A: Chem.148(2002)57-64
47. Eiji Hosono et al.“The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells”Adv. Mater. 2005,17,2091-2094
48. K. Keis et al.“A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes” Sol. Energy Mater. Sol. Cells 73(2002)51-58
49. P Hoyer, H Weller. J. Phys. Chem., 1995, 99 (38): 14096-14100.
50. H Gerischer, H Tributsch, B Bunsenges. Phys. Chem., 1969, 73(1): 251-256.
51. M Matsumura, S Matsudaira, H Tsubomura. Ind. Eng. Chem. Prod. Res. Dev., 1980, 19(3): 415-421.
52. G Redmond, D Fitzmaurize, M Gräetzel. Chem. Mater., 1994, 6(5): 686-691
53. H Rensmo, K Keis, H Lindstrom et al. J. Phys. Chem., 1997, 101(14): 2598-2601.
54. Wang et al., “A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode” Chem. Mater. 2001(13) 678-682
55. Roh et al.“Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells” Appl. Phys. Lett. 2006,89, 253512
56. K.E. Kim et al.“Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition” Sol. Energy Mater. Sol. Cells 91 (2007) 366–370
57. S.-S. Kim et al.“Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles” J. Photochem. Photobiol. A: Chem. 171 (2005) 269–273
58. Mane et al.“Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye-Sensitized Solar Cells”J. Phys. Chem. B 2005, 109, 24254-24259
59. Katoh et al., “Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films” J. Phys. Chem. B 2004(108) 4818-4822
60. A. Zaban et al., “Bilayer nanoporous electrodes for dye sensitized solar cells” Chem. Comm. 2000 2231-2232
61. Park et al., “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2 and TiO2 Cores” Langmuir 2004(20) 4246-4253
62. S. S. Kim et al., “Improved performance of a dye-sensitized solar cell using a TiO2/ZnO/Eosin Y electrode” Sol. Energy Mater. Sol. Cells 2003(79) 495-505
63. J. He et al., “Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell” J. Phys. Chem. B 1999(103) 8940-8943
64. F. Lenzmann et al., “Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States” J. Phys. Chem. B 2001(105) 6347-6352
65. Y. Diamant et al., “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core” J. Phys. Chem. B 2003(107) 1977-1981
66. Michael Grätzel,“Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 3–14
67. T.Ko, P.Marshall, and A.Fontijn, J.Phys.Chem. 94,1401(1990)
68. N.S.Rasor, and J.D.McClelland, Rev.Sci.Instr.31,595(1960)
69. P.L.Start, J.Sci.Instr. 37,17(1960)
70. A. Hagfeldt and M. Grätzel﹐Chem. Rev. 1995﹐95﹐49–68.
71. K. Kalyanasundaram and M. Grätzel﹐Coord. Chem. Rev. 1998﹐177﹐347–414.
72. M. Grätzel﹐Current Opinion in Colloid and Interface Science 1999﹐4﹐314–321.
73. Cahen et al.﹐J.Phys.Chem. B 2000﹐104﹐2053–2059.
74. A. Fujishima et al.﹐Sol. Energy Mater. Sol. Cells 2004﹐81﹐197 –203.
75. Shogo Nakade﹔Yohei Makimoto﹔Wataru Kubo﹔Takayuki Kitamur﹔Yuji Wada﹔and Shozo Yanagida﹐J. Phys. Chem. B 2005, 109, 3480–3487.
76. 于仙仙﹐胡志強﹐王一﹐韓旭﹐高岩﹐李國﹐“ZnO/TiO2薄膜製備及在太陽能電池中的應用”大連輕工業學院學報 2007,26,1
77. Choi et al., “Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light” Environ. Sci. Technol. 2003(37) 147-152
78. Choi et al., “Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2” Environ. Sci. Technol. 2001(35) 966-970
79. Chen et al., “Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism” J. Phys. Chem. B 2002(106) 318-324
80. Chen et al., “Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulfo-rhodamine-B Dyein Aqueous TiO2 Dispersion” Environ. Sci. Technol. 2002(36) 3604-3611
81. Zaban et al., “Relative energetics at the semiconductor/sensitizing dye/electrolyte interface” J. Phys. Chem. B 1998(102) 452-460
82. Zaban et al., “Electric potential distribution and short-range screening in nanoporous TiO2 electrodes” J. Phys. Chem. B 1997(101) 7985-7990
83. Huang et al., “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells” J. Phys. Chem. B 1997(101) 2576-2582
84. Haque et al., “Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias” J. Phys. Chem. B 1998(102) 1745-1749
85. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Leone, S.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” J. Am. Chem. Soc. 2001, vol. 123, pp. 1613-1624.
86. A.B. Kashyout, M. Soliman, M. El Gamal, M. Fathy “Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells” Materials Chemistry and Physics 90 (2005) 230–233
87. S.Chengwu et al,“Influence of 1-methyl-3-propylimidazolium iodide on I3-/I- redox behavior and photovoltaic performance of dye-sensitized solar cells” Solar Energy Materials & Solar Cells 86 (2005) 527–535
88. http://www.dur.ac.uk/~dph0www5/am1_5.html
89. M.Quintana et al,“Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime” J. Phys. Chem. C 2007, 111, 1035-1041
90. Prof. G. Z. et al,“Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency” Adv. Mater. 2007, 19, 2588–2592
91. M. LAW et al,“Nanowire dye-sensitized solar cells” nature materials | VOL 4 | JUNE 2005
92. Alex et al.,“ZnO Nanotube Based Dye-Sensitized Solar Cells” Nano Lett., Vol. 7, No. 8, 2007
93. Ali et al.,“Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells”Sol. Energy Mater. Sol. Cells 91(2007)1658-1662
94. Rong et al.,“Studies on the adsorption of RuN3 dye on sheet-like nanostructured porous ZnO films”Sol. Energy Mater. Sol. Cells 92(2008)425-431
95. Lifen et al,“Hierarchical ZnO Nanostructures Obtained by Electrodeposition” J. Phys. Chem. C 2007, 111, 11560-11565
96. Agnaldo et al.,“Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells” The Royal Society of Chemistry 2008, 2008, 1487–1491
97. Seigo et al.,“Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells”Res. Appl. 2007; 15:603–612
98. K Fujihara et al.,“Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell” Nanotechnology 18 (2007) 365709
99. 汪建民,材料分析,1998,中國材料科學學會
100. D.B.Williams,C.B.Carter,Transmission Electron Microscopy,1996,Plenum Press.
101. 陳頤承、郭昭顯、陳俊亨,太陽電池量測技術,工業材料雜誌258期
102. http://nhml.com/resources_NHML_Scanning-Electron-Microscopes.php
103. http://www.udel.edu/biology/Wags/histopage/illuspage/lec1/lec1.htm
104. Keis, K.; Lindgren, J.; Lindquist, S.-E.; Hagfeldt, A. Langmuir 2000,16, 4688.
105. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 5585.
106. Keita Kakiuchi, Eiji Hosono, Shinobu Fujihara,“Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719” Journal of Photochemistry and Photobiology A: Chemistry 179 (2006) 81–86
107. Anusom et al.,“Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture” J. AM. CHEM. SOC. 2008, 130, 4007-4015