簡易檢索 / 詳目顯示

研究生: 陳奕欽
論文名稱: 強化染料敏化太陽能電池中氧化鋅電極的光電轉換效率
Enhanced Energy Conversion Efficiency of ZnO Dye-Sensitized Solar Cell
指導教授: 開執中
陳福榮
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 105
中文關鍵詞: 染料敏化太陽能電池氧化鋅
外文關鍵詞: DSSC, ZnO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在本研究中討論工作電極、染料、以及電解質等研究方向,分別設計一系列的實驗並建立研究方法。工作電極方面以噴霧成膜及刮刀成膜法產生氧化鋅多孔膜電極於導電玻璃上,應用於染料敏化太陽能電池,並討論氧化鋅薄膜製作方式、晶相及膜厚的影響。刮刀成膜法對於製作工作電極而言,是比較便利,且容易控制參數,若搭配適當的漿料比例,可以得到較均勻且完整性高的工作電極。
    氧化鋅染料敏化太陽能電池中,氧化鋅會和Ru錯化合物的染料會產生複合產物,導致光電轉換效率降低。所以本實驗利用縮短浸泡染料的時間,減低形成複合產物,得到最好的光電轉換效率。
    最後以DSSC結構為基礎,而使用半導體量子點(Quantum Dot)強化染料敏化太陽能電池的光電轉換效率,利用量子點來增強染料的吸收光波長範圍,以增加染料敏化太陽能電池的光電轉換效率。將量子點直接組裝在氧化鋅表面,並且由SEM、TEM影像觀察其連結情形,最後以太陽能電池J-V特性、IPCE數據量測來證明其增強染料敏化太陽能電池的效果。


    目錄 頁次 摘要 I 目錄 II 圖目錄 IV 表目錄 VIII 第一章 緒論 1 1-1前言 1 1-2太陽能電池簡介 2 1-2-1太陽能電池之構造與太陽光發電原理 3 1-3太陽能電池的種類 4 1-3-1矽基板太陽能電池 4 1-3-2薄膜太陽能電池 5 1-3-3染料敏化太陽能電池 6 1-4 研究背景與目的 6 第二章 文獻回顧 10 2-1 氧化鋅(Zinc Oxide﹐ZnO) 10 2-2 染料敏化太陽能電池 11 2-2-1染料敏化太陽能電池的發展 12 2-2-2染料敏化太陽能電池的工作原理與結構 14 2-2-3傳統矽晶片太陽能電池與染料敏化太陽能電池的比較 17 2-2-4光敏化劑–染料 18 2-2-5電解質 19 2-2-6太陽能電池電流–電壓輸出特性 20 2-3 氧化鋅應用於染料敏化太陽能電池 22 第三章 實驗方法與設備 38 3-1 染料敏化太陽能電池的製備 38 3-1-1 ZnO電極製備 38 3-1-2電解質的製備 39 3-1-3 DSSC組裝 40 3-2 量測分析 41 3-2-1掃描式電子顯微鏡(Scanning Electron Microscopy﹐SEM) 41 3-2-2穿透式電子顯微鏡(Transmission Electron Microscopy﹐TEM) 41 3-2-3 X光繞射儀(X-ray Diffraction﹐XRD) 43 3-2-4紫外光/可見光光譜儀(UV/Vis spectrophotometer) 44 3-2-5太陽能電池I–V 曲線量測儀器 44 3-2-6光電轉換效率測定儀(IPCE measurement) 45 第四章 結果與討論 51 4-1 ZnO多孔膜電極特性分析 51 4-1-1 ZnO多孔膜製程的影響 51 4-1-2 ZnO多孔膜燒結溫度的影響 52 4-1-3 ZnO漿料調配 54 4-1-4 ZnO電極厚度的影響 54 4-2染料(N719)的吸收特性分析 55 4-2-1 染料吸附時間 56 4-2-2 ZnO吸附染料TEM影像圖 56 4-3電解質的影響 57 4-4 CdSe/ZnS量子點應用於染料敏化太陽能電池 57 4-4-1 CdSe/ZnS量子點吸附於ZnO表面形態分析 58 4-4-2 太陽能電池的效能分析 59 4-4-2-1 不同時間沉積量子點的電池效率 59 4-4-2-2 IPCE與光學特性分析 59 第五章 結論 93 第六章 未來工作及建議 94 參考文獻 96 圖目錄 圖1-1太陽能電池運作原理簡單示意圖 9 圖2-1氧化鋅結構 25 圖2-2染料敏化太陽能電池之結構示意圖 26 圖2-3染料敏化太陽能電池發電原理圖 26 圖2-4染料敏化太陽能電池中產生電子-電洞再結合的機制 27 圖2-5常見的染料其結構圖 28 圖2-6 N719 Dye和Black Dye的UV-vis吸收光譜 29 圖2-7 N3 Dye(a)和black berry dye(b)吸附在ZnO薄膜上的UV-vis吸收光譜 29 圖2-8典型太陽能電池的電流電壓(I-V)圖 30 圖2-9不同入射光強度照射下的電流電壓(I-V)曲線圖 30 圖2-10太陽光譜圖 31 圖2-11空氣質量(air mass﹐AM)的示意圖 31 圖2-12填充因子(fill factor﹐FF)的示意圖 32 圖2-13半導體氧化物的能階示意圖 33 圖2-14 N719染料吸附在ZnO和TiO2電極上的UV-vis吸收光譜 33 圖2-15陣列式ZnO奈米線染料敏化太陽能電池 34 圖2-16奈米粒子和奈米線製成的DSSC,其短路電流密度對粗糙度作圖 35 圖2-17階梯式的ZnO奈米結構示意圖 36 圖2-18 ZnO和TiO2的lifetime對開路電壓的比較圖 37 圖3-1 Spray coating method製作ZnO電極的示意圖 46 圖3-2 ZnO漿料製作流程圖 46 圖3-3 Doctor Blade method製作ZnO電極的示意圖 47 圖3-4 DSSC三明治結構示意圖 47 圖3-5 DSSC組裝示意圖 48 圖3-6掃瞄式電子顯微鏡的結構示意圖 48 圖3-7穿透式電子顯微鏡結構示意圖 49 圖3-8 Oriel Class A太陽光模擬器(solar simulator) 50 圖4-1 Spray coating製作的ZnO電極之SEM表面形貌與剖面圖 64 圖4-2 Spray coating製作的(a)薄ZnO電極、(b)厚ZnO電極,組裝成太陽能電池的J-V特性曲線圖 65 圖4-3 Doctor blade method製作的ZnO電極之SEM表面形貌與剖面圖 66 圖4-4 Doctor blading製作的ZnO電極,組裝成太陽能電池的J-V特性曲線圖 67 圖4-5 Spray coating製作的(a) ZnO電極有400℃燒結、(b) ZnO電極無400℃燒結,組裝成太陽能電池的J-V特性曲線圖 68 圖4-6 Doctor blading製作的ZnO電極分別以(a)250℃、(b)300℃、(c)400℃燒結,組裝成太陽能電池的J-V特性曲線圖 69 圖4-7基板FTO玻璃在不同燒結溫度下的XRD分析結果 69 圖4-8 ZnO電極在不同燒結溫度下的XRD分析結果 70 圖4-9不同PEG對ZnO比例(a)0.3:1(b)0.5:1(c)1:1(d)2.5:1(e)5:1的漿料所製作的ZnO電極,組裝成太陽能電池的J-V特性曲線圖 71 圖4-10 PEG對ZnO的比例為0.3比1所製作的ZnO電極之SEM表面形貌與剖面圖 72 圖4-11 PEG對ZnO的比例為0.5比1所製作的ZnO電極之SEM表面形貌與剖面圖 73 圖4-12 PEG對ZnO的比例為1比1所製作的ZnO電極之SEM表面形貌與剖面圖 74 圖4-13 用薄膠帶以Doctor blading製作的ZnO電極之SEM剖面圖 75 圖4-14 用厚膠帶以Doctor blading製作的ZnO電極之SEM剖面圖 75 圖4-15用薄膠帶以Doctor blading製作2次成膜程序的ZnO電極之SEM剖面圖 76 圖4-16用厚膠帶以Doctor blading製作2次成膜程序的ZnO電極之SEM剖面圖 76 圖4-17用薄、厚膠帶以Doctor blading製作的ZnO電極之SEM剖面圖 77 圖4-18 ZnO電極厚度對填充因子(FF)及光電轉換效率比較圖 78 圖4-19為12μm的ZnO電極,組裝成太陽能電池的J-V特性曲線圖 79 圖4-20為20~24μm的ZnO電極,組裝成太陽能電池的J-V特性曲線圖。 79 圖4-21染料吸附時間1、2、5、10分鐘對短路電流密度比較圖 80 圖4-22染料吸附時間1、2、5、10分鐘對光電轉換效率比較圖 81 圖4-23染料吸附一天之TEM影像圖 82 圖4-24染料吸附兩天之TEM影像圖 82 圖4-25染料吸附一天之EDS分析 83 圖4-26無染料吸附之ZnO粒子EDS分析 83 圖4-27丙烯碳酸鹽(PC)及乙腈(AN)對於太陽能電池的J-V特性曲線圖的影響 84 圖4-28 CdSe/ZnS量子點吸附於ZnO之SEM剖面圖 85 圖4-29 CdSe/ZnS量子點之EDS分析 86 圖4-30 CdSe/ZnS量子點吸附於ZnO 86 圖4-31 CdSe/ZnS量子點之EDS分析 87 圖4-32 CdSe/ZnS量子點之HR-TEM影像圖(陳家俊教授/材料化學研究室所提供) 87 圖4-33 CdSe/ZnS量子點之EDS分析(陳家俊教授/材料化學研究室所提供) 88 圖4-34 CdSe/ZnS量子點之XRD分析(陳家俊教授/材料化學研究室所提供) 88 圖4-35 ZnO粒子的TEM影像圖與EDS分析 89 圖4-36 CdSe/ZnS量子點吸附於ZnO的TEM影像圖與EDS分析 89 圖4-37不同吸附CdSe/ZnS量子點時間 (a)無吸附(b)1小時(c)2小時(d)3小時(e)12小時所製作的ZnO電極,組裝成太陽能電池的J-V特性曲線圖 90 圖4-38不同吸附CdSe/ZnS量子點時間3小時、12小時所製作之染料敏化太陽能電池的IPCE曲線 91 圖4-39有無吸附CdSe/ZnS量子點之染料敏化太陽能電池的IPCE曲線比較圖 91 圖4-40有無吸附CdSe/ZnS量子點所製作的ZnO電極,組裝成太陽能電池的J-V特性曲線圖 92 圖4-41為三個不同階段的UV-Vis吸收光譜分析。(a)ZnO(b)ZnO吸附量子點(c)ZnO吸附量子點後吸附染料 92 表目錄 表1-1各類型太陽能電池效率和成本差異 8 表2-1染料敏化太陽能電池中不同染料得到的最好效率 24 表2-2近年來ZnO應用於染料敏化太陽能電池的文獻 24 表4-1 ITO、FTO經退火後的電阻值變化 61 表4-2不同吸附CdSe/ZnS量子點時間3小時、12小時所製作的ZnO電極,組裝成DSSC,測量其光電轉換效率 61 表4-3不同吸附CdSe/ZnS量子點時間3小時、12小時所製作的ZnO電極,組裝成DSSC,測量其短路電流密度(Jsc) 62 表4-4不同吸附CdSe/ZnS量子點時間3小時、12小時所製作的ZnO電極,組裝成DSSC,測量其開路電壓(Voc) 63

    參考文獻
    1. M. Grätzel, “Photoelectrochemical cells” Nature 2001(414) 338-344
    2. M. Grätzel, “Powering the planet” Nature 2000(403) 363
    3. Vlachopoulos, N.; Liska, P.; Augustynski, J.; Grätzel, M. J. Am. Chem. Soc. 1988, 110, 1216.
    4. Grätzel, M. Inorg. Chem. 2005, 44, 6841.
    5. Robertson, N. Angew. Chem. Int. Ed. 2006, 45, 2338.
    6. Yanagida, S. C. R. Chimie 2006, 9, 597.
    7. Grätzel, M. C. R. Chimie 2006, 9, 578.
    8. “Handbook of Photovoltaic Science and Engineering”, Ed. By Antonio Luque and Steven Hegedus, John Wiley & Sons, 2003.
    9. 經濟部太陽光電示範系統資訊網
    http://210.69.121.54/moea/Docs/index.html
    10. 黃建昇﹐結晶矽太陽電池發展近況﹐工業材料雜誌 2003﹐203期﹐150.
    11. 郭明村﹐薄膜太陽電池發展近況﹐工業材料雜誌 2003﹐203期﹐138.
    12. 楊素華, 蔡泰成, 科學發展 390,50(2005)
    13. S.Guha et al, Appl.Phys.Lett 1999,74,1860
    14. Antonio Luaue and Steven Hegedus, Handbook of photovoltaic Science and Enginnering, 2004
    15. M.K. Nazeeruddin, A.Kay, I.Rodicio, R Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, and M. Grätzel, J.Am.Chem.Soc.115,6382(1993)
    16. B. O’Regan, M. Grätzel, “A low, high-efficiency solar cell based on dye-sensiized colloidal TiO2 films.” Nature, Vol. 353, Oct 24 1991.
    17. M. A. Green, K. Emery, D. L. King, Y. Hishikawa, W. Warta, Prog. Photovol.: Res. Appl. 2006, 14, 455.
    18. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
    19. M. Grätzel, J. Photochem. Photobiol. C 2003, 4, 145.
    20. E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 2003, 82, 3901.
    21. T. Dittrich, E. A. Lebedev, J. Weidmann, Phys. Status Solidi A: RRN 1998, 165, R5.
    22. Yuji Matsumoto, Makoto Murakami, Tomoji Shono,Tetsuya Hasegawa, Tomoteru Fukumura, Masashi Kawasaki,Parhat Ahmet, Toyohiro Chikyow, Shin-ya Koshihara,Hideomi Koinuma1,Science 291,854 (2001).
    23. 半導體元件物理與應用,張俊彥譯,施敏著.
    24. H.J.Ko, Y.F.Chen, S.K.Hong, H.Wenisch, T. Yao, Appl. Phys. Lett .77, 3761 (2000).
    25. Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma ,Y. Segawa, Appl. Phys. Lett .72, 3270 (1998).
    26. D.C.Reynolds, D.C.Lock ,SolidState Commun.99, 873 (1996).
    27. D.M.Bagnall,Y.F.Chen, Z.Zhu,T.Yao,S.Koyama,M.Y.Shen,T.Goto, Appl. Phys. Lett .70, 2230 (1997).
    28. Michael H. Huang, Samuel Mao, Henning Feick, Haoquan Yan,Yiying Wu,Hannes Kind, Eicke Weber, Richard Russo,Peidong Yang,Science 298, 1897 (2001).
    29. Numerical Data and Functional Relationships in Science and Technology./v/22 Subvolume a. Intrinsic Properties of Group IV Elements and III-V,II-IV and I-VII Compound,Berlin: /Springer- Verlag,/1987
    30. M.Joseph, H.Tabata, T.Kawai, Jpn. J. Appl. Phys. 238, 2505 (1999).
    31. R. L. Hoffman, Appl. Phys. Lett. 82, 733 (2003).
    32. W.S.Hu,Z.G.Liu,R.X.Wu,Y-F Chen,W.Ji,T.Yu,d.Feng, Appl. Phys. Lett.71, 548 (1997).
    33. S.Ezhilvalavan,T,R,N,Kutty, Appl. phys. Lett. 69, 3540 (1996).
    34. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci,A. Selloni, G. Viscardi,P. Liska, S. Ito, B. Takeru, and M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835.
    35. F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations” J. Phys. Chem. 1940(44) 865-873
    36. 萬海保,曹立新,王麗穎,曾廣賦,席時權, “染料敏化的TiO2納米晶多孔膜的性質及其光電轉換” 化學通報 1999(6)
    37. H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide/aqueous electrolyte/platinum photocell” Nature 1976(261) 402
    38. Park et al., “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells” J. Phys. Chem. B 2000(104) 8989-8994
    39. Park et al., “Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4” J. Phys. Chem. B 1999(103) 3308-3314
    40. S. Ito et al., “Facilefabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating” Sol. Energy Mater. Sol. Cells 2003(76) 3-13
    41. S. Nakade et al., “Dependence of TiO2 nanoparticle preparation methods and annealing temperature on the efficiency of dye-sensitized solar cells” J. Phys. Chem. B 2002(106) 10004-10010
    42. G. Redmond et al., “Visible light sensitization by cis-Bis(thiocyanato) -bis(2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques” Chem. Mater. 1994(6) 686-691
    43. P. Hoyer and H. Weller, “Potential-dependent electron injection in nanoporous colloidal ZnO films” J. Phys. Chem. 1995(99) 14096-14100
    44. Pauportĕ et al., “Electrochemical growth of epitaxial Eosin/ZnO hybrid films” J. Phys. Chem. B 2003(107) 10077-10082
    45. Oekermann et al., “Electron transfer and back reaction in electrochemically self assenibled nanoporous ZnO/dye hybrid films” J. Phys. Chem. B 2004(108) 8364-8370
    46. K. Keis et al.“Nanostructured ZnO electrodes for dye-sensitized solar cell applications”J. Photochem. Photobiol. A: Chem.148(2002)57-64
    47. Eiji Hosono et al.“The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells”Adv. Mater. 2005,17,2091-2094
    48. K. Keis et al.“A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes” Sol. Energy Mater. Sol. Cells 73(2002)51-58
    49. P Hoyer, H Weller. J. Phys. Chem., 1995, 99 (38): 14096-14100.
    50. H Gerischer, H Tributsch, B Bunsenges. Phys. Chem., 1969, 73(1): 251-256.
    51. M Matsumura, S Matsudaira, H Tsubomura. Ind. Eng. Chem. Prod. Res. Dev., 1980, 19(3): 415-421.
    52. G Redmond, D Fitzmaurize, M Gräetzel. Chem. Mater., 1994, 6(5): 686-691
    53. H Rensmo, K Keis, H Lindstrom et al. J. Phys. Chem., 1997, 101(14): 2598-2601.
    54. Wang et al., “A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode” Chem. Mater. 2001(13) 678-682
    55. Roh et al.“Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells” Appl. Phys. Lett. 2006,89, 253512
    56. K.E. Kim et al.“Enhancement in the performance of dye-sensitized solar cells containing ZnO-covered TiO2 electrodes prepared by thermal chemical vapor deposition” Sol. Energy Mater. Sol. Cells 91 (2007) 366–370
    57. S.-S. Kim et al.“Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles” J. Photochem. Photobiol. A: Chem. 171 (2005) 269–273
    58. Mane et al.“Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye-Sensitized Solar Cells”J. Phys. Chem. B 2005, 109, 24254-24259
    59. Katoh et al., “Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films” J. Phys. Chem. B 2004(108) 4818-4822
    60. A. Zaban et al., “Bilayer nanoporous electrodes for dye sensitized solar cells” Chem. Comm. 2000 2231-2232
    61. Park et al., “Morphological and Photoelectrochemical Characterization of Core-Shell Nanoparticle Films for Dye-Sensitized Solar Cells: Zn-O Type Shell on SnO2 and TiO2 Cores” Langmuir 2004(20) 4246-4253
    62. S. S. Kim et al., “Improved performance of a dye-sensitized solar cell using a TiO2/ZnO/Eosin Y electrode” Sol. Energy Mater. Sol. Cells 2003(79) 495-505
    63. J. He et al., “Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell” J. Phys. Chem. B 1999(103) 8940-8943
    64. F. Lenzmann et al., “Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States” J. Phys. Chem. B 2001(105) 6347-6352
    65. Y. Diamant et al., “Core-Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core” J. Phys. Chem. B 2003(107) 1977-1981
    66. Michael Grätzel,“Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” Journal of Photochemistry and Photobiology A: Chemistry 164 (2004) 3–14
    67. T.Ko, P.Marshall, and A.Fontijn, J.Phys.Chem. 94,1401(1990)
    68. N.S.Rasor, and J.D.McClelland, Rev.Sci.Instr.31,595(1960)
    69. P.L.Start, J.Sci.Instr. 37,17(1960)
    70. A. Hagfeldt and M. Grätzel﹐Chem. Rev. 1995﹐95﹐49–68.
    71. K. Kalyanasundaram and M. Grätzel﹐Coord. Chem. Rev. 1998﹐177﹐347–414.
    72. M. Grätzel﹐Current Opinion in Colloid and Interface Science 1999﹐4﹐314–321.
    73. Cahen et al.﹐J.Phys.Chem. B 2000﹐104﹐2053–2059.
    74. A. Fujishima et al.﹐Sol. Energy Mater. Sol. Cells 2004﹐81﹐197 –203.
    75. Shogo Nakade﹔Yohei Makimoto﹔Wataru Kubo﹔Takayuki Kitamur﹔Yuji Wada﹔and Shozo Yanagida﹐J. Phys. Chem. B 2005, 109, 3480–3487.
    76. 于仙仙﹐胡志強﹐王一﹐韓旭﹐高岩﹐李國﹐“ZnO/TiO2薄膜製備及在太陽能電池中的應用”大連輕工業學院學報 2007,26,1
    77. Choi et al., “Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized Metal/TiO2 under Visible Light” Environ. Sci. Technol. 2003(37) 147-152
    78. Choi et al., “Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2” Environ. Sci. Technol. 2001(35) 966-970
    79. Chen et al., “Effect of Transition Metal Ions on the TiO2-Assisted Photodegradation of Dyes under Visible Irradiation: A Probe for the Interfacial Electron Transfer Process and Reaction Mechanism” J. Phys. Chem. B 2002(106) 318-324
    80. Chen et al., “Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulfo-rhodamine-B Dyein Aqueous TiO2 Dispersion” Environ. Sci. Technol. 2002(36) 3604-3611
    81. Zaban et al., “Relative energetics at the semiconductor/sensitizing dye/electrolyte interface” J. Phys. Chem. B 1998(102) 452-460
    82. Zaban et al., “Electric potential distribution and short-range screening in nanoporous TiO2 electrodes” J. Phys. Chem. B 1997(101) 7985-7990
    83. Huang et al., “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells” J. Phys. Chem. B 1997(101) 2576-2582
    84. Haque et al., “Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias” J. Phys. Chem. B 1998(102) 1745-1749
    85. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Leone, S.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” J. Am. Chem. Soc. 2001, vol. 123, pp. 1613-1624.
    86. A.B. Kashyout, M. Soliman, M. El Gamal, M. Fathy “Preparation and characterization of nano particles ZnO films for dye-sensitized solar cells” Materials Chemistry and Physics 90 (2005) 230–233
    87. S.Chengwu et al,“Influence of 1-methyl-3-propylimidazolium iodide on I3-/I- redox behavior and photovoltaic performance of dye-sensitized solar cells” Solar Energy Materials & Solar Cells 86 (2005) 527–535
    88. http://www.dur.ac.uk/~dph0www5/am1_5.html
    89. M.Quintana et al,“Comparison of Dye-Sensitized ZnO and TiO2 Solar Cells: Studies of Charge Transport and Carrier Lifetime” J. Phys. Chem. C 2007, 111, 1035-1041
    90. Prof. G. Z. et al,“Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency” Adv. Mater. 2007, 19, 2588–2592
    91. M. LAW et al,“Nanowire dye-sensitized solar cells” nature materials | VOL 4 | JUNE 2005
    92. Alex et al.,“ZnO Nanotube Based Dye-Sensitized Solar Cells” Nano Lett., Vol. 7, No. 8, 2007
    93. Ali et al.,“Preparation of ZnO nanoparticles and nanosheets and their application to dye-sensitized solar cells”Sol. Energy Mater. Sol. Cells 91(2007)1658-1662
    94. Rong et al.,“Studies on the adsorption of RuN3 dye on sheet-like nanostructured porous ZnO films”Sol. Energy Mater. Sol. Cells 92(2008)425-431
    95. Lifen et al,“Hierarchical ZnO Nanostructures Obtained by Electrodeposition” J. Phys. Chem. C 2007, 111, 11560-11565
    96. Agnaldo et al.,“Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells” The Royal Society of Chemistry 2008, 2008, 1487–1491
    97. Seigo et al.,“Fabrication of Screen-Printing Pastes From TiO2 Powders for Dye-Sensitised Solar Cells”Res. Appl. 2007; 15:603–612
    98. K Fujihara et al.,“Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell” Nanotechnology 18 (2007) 365709
    99. 汪建民,材料分析,1998,中國材料科學學會
    100. D.B.Williams,C.B.Carter,Transmission Electron Microscopy,1996,Plenum Press.
    101. 陳頤承、郭昭顯、陳俊亨,太陽電池量測技術,工業材料雜誌258期
    102. http://nhml.com/resources_NHML_Scanning-Electron-Microscopes.php
    103. http://www.udel.edu/biology/Wags/histopage/illuspage/lec1/lec1.htm
    104. Keis, K.; Lindgren, J.; Lindquist, S.-E.; Hagfeldt, A. Langmuir 2000,16, 4688.
    105. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 5585.
    106. Keita Kakiuchi, Eiji Hosono, Shinobu Fujihara,“Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719” Journal of Photochemistry and Photobiology A: Chemistry 179 (2006) 81–86
    107. Anusom et al.,“Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture” J. AM. CHEM. SOC. 2008, 130, 4007-4015

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE