研究生: |
宋秉橙 Sung, Ping Cheng |
---|---|
論文名稱: |
The study of thermal curing carbon nanotube/epoxy composite adhesives 熱固化奈米碳管/環氧樹脂複合膠料膠合研究 |
指導教授: |
張士欽
Chang, Shih Chin |
口試委員: |
張存續
洪健龍 方友清 徐文光 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 奈米碳管 、微波加熱 、環氧樹脂複合材料 、直接電流加熱 、膠料接合 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環氧樹脂廣泛用於膠合結構與修補損傷。本研究使用奈米碳管加入環氧樹脂製成奈米碳管/環氧樹脂之複合膠料,使環氧樹脂具有可吸收微波以及可導電之性質,發展出以微波加熱以及直接電流加熱快速固化奈米碳管/環氧樹脂複合膠料的技術。
利用微波可以直接加熱複合膠料中的奈米碳管,使接合時間大幅降低至傳統加熱方式的1/3 ~ 1/4。使用傳統加熱奈米碳管/環氧樹脂複合膠料時,環氧樹脂的交連密度隨著碳管含量增加而降低;相對的,本研究發現,使用微波加熱對交連密度幾乎沒有影響。微波加熱還能使固化後殘留在膠料層中的氣泡縮小,使接合強度較傳統加熱者來得更高。
但是微波加熱無法簡單應用在接合會反射微波或是對微波具有強吸收性的材料,如金屬、碳纖維複合材料等。此外,微波加熱需要一定的微波系統設備,而試片之尺寸也會受到微波設備大小的限制。因此我們發展出了以電流直接加熱奈米碳管/環氧樹脂的技術。
當奈米碳管加入環氧樹脂的含量超過一門檻量(percolation threshold)時,奈米碳管可在環氧樹脂中形成導通網路,使得奈米碳管-環氧樹脂複合膠料的導電性大幅提高。然而奈米碳管具有溫度越高、電阻越低之特性,若使用一般施加電流的方式加熱此複合膠料,會使一開始已導通之區域有電流集中通過的溫度-電流之正回饋現象,導致膠料部分區域集中過熱燒毀。為了改善此問題,我們使用奈米碳管薄膜( buckypaper )當作使電流通過之加熱體加熱奈米碳管/環氧樹脂複合膠料,使用此種加熱方式可將加熱固化的時間從原本的60分鐘減少到25分鐘。由於使用buckypaper具有溫度-功率的負回饋效應而使加熱更均勻,再加上此加熱方式有自發排除氣泡的特性,能使膠料固化後殘留之氣泡大幅減少,而使接合強度相較於傳統加熱且未加入奈米碳管之接合提高了56%。
在接合導體材料如不銹鋼、黃銅、鋁板時,我們可以不使用奈米碳管薄膜,而直接以欲接合的導電基材作為兩電極,使電流自一基板經由導電膠料後從另一基板導出。由於此種加熱方式,電流流過的是膠料的厚度,其流過路徑極短而電流通過的面積極大,且金屬基板可快速導熱,因此可大幅緩解溫度-電流之正回饋現象而達成穩定且快速的加熱固化效果。然而,由於奈米碳管與金屬間之作用力極低,添加奈米碳管會使得金屬與膠料間接合強度下降。因此,碳管加入的含量僅需使複合膠料產生適當導電性質即可。
使用電流加熱固化奈米碳管/環氧樹脂複合膠料是理論上最節省能源的熱固化環氧樹脂方式,且不需要特殊的設備。不僅能大幅縮短固化時間,且能適用於各種環氧樹脂可接合之材料,無論是非導體材料、導體材料或是會吸收微波之材料皆可。因此可廣泛應用在各式材料之接合或修補。
Carbon nanotubes (CNTs) could add in traditional thermal curing epoxy adhesive as effective strengtheners. The addition of CNTs not only strengthens the epoxy but also make it able to absorb microwave energy and conduct electrical current. In this work, processes of adhesive bonding by curing of carbon nanotube (CNT)/epoxy composite adhesives with microwave and direct application of electrical current were developed for fast and energy save bonding of materials.
Using microwave to cure epoxy adhesive containing multi-wall carbon nanotubes not only leads to large time and energy savings, but also results in much higher strength. The curing time by microwave heating was shortened to just 1/3 - 1/4 of that required by conventional heating means. The well-dispersed CNTs in the epoxy resin absorb microwave energy, acting as heat sources to cure the epoxy resin uniformly and effectively. Microwave curing can diminish the deterioration effect of lowering cross-link reaction by CNTs as observed in conventional heating. Thus, as much as three times addition of CNTs in the epoxy is allowed for optimum strength. As a result, 56% increase of the shear strength was observed when the epoxy adhesive doped with 3wt% CNTs was cured by microwave heating.
However, microwave curing of adhesive bonding cannot easily apply to materials that absorb or reflect microwave radiations strongly. The high equipment cost, size of microwave chamber and complexity in uniform power control put additional limitations to the application of microwave curing process. Therefore, there is definitely a need to develop a simple, time saving and cost effective process for curing CNT/epoxy adhesives. So, we developed the processes of thermal curing CNT/epoxy composite adhesives with direct application of electrical current.
Since CNTs are largely semi-conductive in nature, when apply electrical current directly through a CNT/epoxy composite adhesive film, the adhesive will burn out along a narrow path while leave other parts of the adhesive totally uncured due to the positive feedback effect. Therefore, two methods were developed to eliminate the detrimental positive feedback effect during Joule heating.
For joining conductive materials, the base materials to be bonded are used as current leads that make the current pass from one plate through the conducting CNTs/epoxy composites film to the other plate. For joining non-conductive materials, buckypaper was used as current carrier in a buckypaper-epoxy adhesive plaster patch. The electrical current passes through the buckypaper to raise the temperature of the epoxy resin for curing. With this process, not only the positive feedback effect can be avoided but also more uniform curing of the CNT/epoxy adhesive can be obtained with a beneficial negative feedback effect.
This process requires only simple equipment and is theoretically the most time and energy saving process for curing CNT/epoxy adhesive. The addition of CNTs in the epoxy can provide better heat transfer and strengthening of the epoxy adhesive. With the use of buckypaper/0.5% CNT/epoxy adhesive cured by Joule heating, the bonding strength increased significantly to be 67% higher compared to conventionally cured specimen with pure epoxy.
[1] Acierno D, Barba AA, d'Amore M. Heat transfer phenomena during processing materials with microwave energy. Heat Mass Transfer. 2004;40(5):413-420.
[2] Ajayan PM, Stephan O, Colliex C, Trauth D. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite. Science. 1994;265(5176):1212-1214.
[3] Tay TE, Fink BK, McKnight SH, Yarlagadda S, Gillespie JW. Accelerated curing of adhesives in bonded joints by induction heating. J Compos Mater. 1999;33(17):1643-1664.
[4] Rider AN, Wang CH, Cao J. Internal resistance heating for homogeneous curing of adhesively bonded repairs. Int J Adhes Adhes. 2011;31(3):168-176.
[5] Mahdi Ashrafi SD, Mark E. Tuttle. Resistive embedded heating for homogeneous curing of adhesively bonded joints. Adhesion and Adhesives. 2015;57:34-39.
[6] da Silva LFM, Carbas RJC, Critchlow GW, Figueiredo MAV, Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int J Adhes Adhes. 2009;29(6):621-632.
[7] da Silva LFM, das Neves PC, Adams RD, Wang A, Spelt JK. Analytical models of adhesively bonded joints-Part II: Comparative study. Int J Adhes Adhes. 2009;29(3):331-341.
[8] da Silva LFM, Rodrigues TNSS, Figueiredo MAV, de Moura MFSF, Chousal JAG. Effect of adhesive type and thickness on the lap shear strength. J Adhesion. 2006;82(11):1091-1115.
[9] Siores E, Dorego D. Microwave Applications in Materials Joining. J Mater Process Tech. 1995;48(1-4):619-625.
[10] Clark DE, Folz DC, West JK. Processing materials with microwave energy. Mat Sci Eng a-Struct. 2000;287(2):153-158.
[11] Soesatyo B, Blicblau AS, Siores E. Effects of microwave curing carbon doped epoxy adhesive-polycarbonate joints. Int J Adhes Adhes. 2000;20(6):489-495.
[12] Varadan VK, Varadan VV. Microwave Joining and Repair of Composite-Materials. Polym Eng Sci. 1991;31(7):470-486.
[13] Imholt TJ, Dyke CA, Hasslacher B, Perez JM, Price DW, Roberts JA, et al. Nanotubes in microwave fields: Light emission, intense heat, outgassing, and reconstruction. Chemistry of Materials. 2003;15(21):3969-3970.
[14] Wang C, Chen T, Chang S, Cheng S, Chin T. Strong carbon-nanotube-polymer bonding by microwave irradiation. Advanced Functional Materials. 2007;17(12):1979-1983.
[15] Wang CY, Chen TH, Chang SC, Chin TS, Cheng SY. Flexible field emitter made of carbon nanotubes microwave welded onto polymer substrates. Appl Phys Lett. 2007;90(10).
[16] Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637-640.
[17] Yu MF, Files BS, Arepalli S, Ruoff RS. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett. 2000;84(24):5552-5555.
[18] Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996;381(6584):678-680.
[19] Kulesza S, Szroeder P, Patyk JK, Szatkowski J, Kozanecki M. High-temperature electrical transport properties of buckypapers composed of doped single-walled carbon nanotubes. Carbon. 2006;44(11):2178-2183.
[20] Koratkar N, Modi A, Lass E, Ajayan P. Temperature effects on resistance of aligned multiwalled carbon nanotube films. J Nanosci Nanotechno. 2004;4(7):744-748.
[21] Gau C, Kuo CY, Ko HS. Electron tunneling in carbon nanotube composites. Nanotechnology. 2009;20(39).
[22] Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382(6586):54-56.
[23] Yang KQ, He J, Puneet P, Su Z, Skove MJ, Gaillard J, et al. Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper. J Phys-Condens Mat. 2010;22(33).
[24] Yue YA, Huang XP, Wang XW. Thermal transport in multiwall carbon nanotube buckypapers. Phys Lett A. 2010;374(40):4144-4151.
[25] Yi W, Lu L, Zhang DL, Pan ZW, Xie SS. Linear specific heat of carbon nanotubes. Phys Rev B. 1999;59(14):R9015-R9018.
[26] Li Y, Qiu XM, Yin YJ, Yang F, Fan QS. The specific heat of carbon nanotube networks and their potential applications. J Phys D Appl Phys. 2009;42(15).
[27] Qian D, Dickey EC, Andrews R, Rantell T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett. 2000;76(20):2868-2870.
[28] Li XD, Gao HS, Scrivens WA, Fei DL, Xu XY, Sutton MA, et al. Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology. 2004;15(11):1416-1423.
[29] Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos Part a-Appl S. 2005;36(11):1555-1561.
[30] Wang Z, Liang ZY, Wang B, Zhang C, Kramer L. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos Part a-Appl S. 2004;35(10):1225-1232.
[31] Lopes PE, van Hattum F, Pereira CMC, Novoa PJRO, Forero S, Hepp F, et al. High CNT content composites with CNT Buckypaper and epoxy resin matrix: Impregnation behaviour composite production and characterization. Compos Struct. 2010;92(6):1291-1298.
[32] Schadler LS, Giannaris SC, Ajayan PM. Load transfer in carbon nanotube epoxy composites. Appl Phys Lett. 1998;73(26):3842-3844.
[33] Guadagno L, Vertuccio L, Sorrentino A, Raimondo M, Naddeo C, Vittoria V, et al. Mechanical and barrier properties of epoxy resin filled with multi-walled carbon nanotubes. Carbon. 2009;47(10):2419-2430.
[34] Burkholder GL, Kwon YW, Pollak RD. Effect of carbon nanotube reinforcement on fracture strength of composite adhesive joints. J Mater Sci. 2011;46(10):3370-3377.
[35] Hollertz R, Chatterjee S, Gutmann H, Geiger T, Nuesch FA, Chu BTT. Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes. Nanotechnology. 2011;22(12).
[36] Balakrishnan A, Saha MC. Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites. Mat Sci Eng a-Struct. 2011;528(3):906-913.
[37] Lachman N, Wagner HD. Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Compos Part a-Appl S. 2010;41(9):1093-1098.
[38] Lee JH, Rhee KY, Park SJ. The tensile and thermal properties of modified CNT-reinforced basalt/epoxy composites. Mat Sci Eng a-Struct. 2010;527(26):6838-6843.
[39] Yu SZ, Tong MN, Critchlow G. Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates. Mater Design. 2010;31:S126-S129.
[40] Fotiou I, Baltopoulos A, Vavouliotis A, Kostopoulos V. Microwave curing of epoxy polymers reinforced with carbon nanotubes. J Appl Polym Sci. 2013;129(5):2754-2764.
[41] Zhang M, Fang SL, Zakhidov AA, Lee SB, Aliev AE, Williams CD, et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science. 2005;309(5738):1215-1219.
[42] Liu P, Liu L, Wei Y, Liu K, Chen Z, Jiang KL, et al. Fast High-Temperature Response of Carbon Nanotube Film and Its Application as an Incandescent Display. Adv Mater. 2009;21(35):3563-+.
[43] Hamada N, Sawada S, Oshiyama A. New One-Dimensional Conductors - Graphitic Microtubules. Phys Rev Lett. 1992;68(10):1579-1581.
[44] Appenzeller J, Martel R, Avouris P, Stahl H, Lengeler B. Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes. Appl Phys Lett. 2001;78(21):3313-3315.
[45] Mahanandia P, Nanda KK. Controllable resistance and temperature dependency of carbon nanotube bundles. Appl Phys Lett. 2008;93(6).
[46] Mas B, Fernandez-Blazquez JP, Duval J, Bunyan H, Vilatela JJ. Thermoset curing through Joule heating of nanocarbons for composite manufacture, repair and soldering. Carbon. 2013;63:523-529.
[47] Chang TH, Chao HW, Syu FH, Chiang WY, Fong SC, Chin TS. Efficient heating with a controlled microwave field. Rev Sci Instrum. 2011;82(12).
[48] Putz KW, Palmeri MJ, Cohn RB, Andrews R, Brinson LC. Effect of cross-link density on interphase creation in polymer nanocomposites. Macromolecules. 2008;41(18):6752-6756.
[49] Hsin Jung Tsai WYL, Wei Cin, Tsung Ying Tsai, and Wen Kuang Hsu. Extraction of Intercalated O2 from Aligned Carbon Nanotubes: The Breaking of Intertube Paths and Exponential Changes in Resistance. CHEMPHYSCHEM.
[50] Tsai TY, Lee CY, Tai NH, Tuan WH. Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices. Appl Phys Lett. 2009;95(1).