研究生: |
林秀芬 Lin, Hsiu-Fen |
---|---|
論文名稱: |
以直流熱電漿技術製作氧化鋅與鋅錫氧化物奈米粉體及其特性之研究 Synthesis and Characterization of ZnO and Zn2SnO4 Nanoparticles via DC Thermal Plasma Technique |
指導教授: |
胡塵滌
Hu, Chen-Ti |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 126 |
中文關鍵詞: | 電漿 、氧化鋅 、鋅錫氧化物 |
外文關鍵詞: | plasma, ZnO, Zn2SnO4 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米級材料因高表面積效應使其展現微米顆粒所不及之物理及化學性質因而受到高度注目。本論文中,我們已成功的建立獨特之直流電漿熱反應設備,並研發出製作量產型金屬氧化物奈米粉體技術。直流熱電漿系統可製作出且有65 %高比例之四足錐狀氧化鋅,本研究將探討四足錐狀氧化鋅比例與直流熱電漿系統操控參數的關係,也將四足錐狀氧化鋅之光學,光穩定性及光觸媒等特性作一系列之研究。進而本論文亦將四足錐狀氧化鋅應用於自清潔及抗菌之疏水塗層,且深入探討由tetrapod ZnO及SiO2奈米粉體組成之複合微米結構體所造成之疏水及抗菌效應並討論其機制。此外,利用操控直流熱電漿系統參數,將鋅錫合金線材製成具有高結晶性之Zn2SnO4奈米粉體並討論電漿能量密度和Zn2SnO4純度關係,及量測純Zn2SnO4光學性質並製作成光敏性太陽能光電電池元件以作研究。
Recently, materials with nanometer size have received tremendous attention
due to their abnormal behavior and very attractive physical and chemical properties.
In this thesis, a new technique (DC thermal plasma method) for producing nano metal
oxide powders with high yield rate (0.8~1 kg/h) was thoughtfully studied. The
excellent relationships of the crystalline phase of a product with the operation
parameters were observed.
The effects of operating parameters on the content ratio of tetrapod-ZnO (TZ) in
the DC thermal plasma produced ZnO nanopowders was investigated in Chapter 3. As
high as 65% tetrapod- ZnO content in the mixture (TZ-65) could be synthesized in
present study. The optical properties, photostability and photocatalytic behaviors of
the as-grown and the annealed TZ-65 ZnO nanopowders were examined in detail.
In Chapter 4, the feasibility of applying tetrapod- ZnO in self-cleaning and
anti-microbial coating was investigated. The effect of adding tetrapod- ZnO
nanoparticles on surface morphology of the micro-nanoscale binary structured
ZnO/SiO2, the retention of hydrophobicity, and the antimicrobial property of the
coating were examined.
The well-crystallized Zinc stannate (Zn2SnO4) (ZTO) nanopowders were
fabricated from commercial Zn-Sn alloy wire with the DC thermal plasma reactor and
thoughtfully studied in Chapter 5. The effect of processing parameters (i.e. plasma
energy density) on the phase composition of synthesized ZTO and the optical property
of the ZTO nanopowders were studied. In addition, the I-V characteristics for ZTO
dye-sensitized solar cell were also investigated.
capter 1
[1] William Crookes, British Association for the Advancement of Science, in Sheffield, on Friday, 22 August 1879.
[2] J.J. Thomson, Cathode Rays, Philosophical Magazine, 44 (1897) 293.
[3] Langmuir, Oscillations in ionized gases, Proc. Nat. Acad. Sci. U.S., 14 (1928) 628.
[4] P. R. Taylor and S. Pirzada, Plasma Processing of Materials, NMAB Report 415, National Academy Press, Washington, D.C. (1985).
[5] William Pole, Life of William Siemens, (London, 1888) 471
[6] N. Venkatramani, Industrial Plasma Torches and Applications, current science, 83 (2002) 254.
[7] D. Matejka, Plasma Spraying of Metallic and Ceramic Materials, (1989) 11.
[8] N. El-Kaddah, Thermal Plasma Applications in Materials and Metallurgical Processing, 1992.
[9] J. Heberlein, New approaches in thermal plasma technology, Pure Appl. Chem., 74 (2002) 327.
[10] P.R. Taylor and S. A. Pirzada, Thermal Plasma Processing of Materials, Advanced Performance Materials, 1 (1994) 35.
[11] N. Rao, S. Girshick, J. Heberlein, P. McMurry, S. Jones, D. Hansen and B. Micheel, Nanoparticle formation using a plasma expansion process, Plasma Chemistry and Plasma Processing 15 (1995) 581.
[12] F. Gitzhofer, Induction plasma synthesis of ultrafine SiC, Pure and Applied Chemistry, 68 (1996) 1113.
[13] P. Fauchais, E. Bourdin, J.F. Coudert and R. McPherson, High pressure plasmas and their application to ceramic technology. In: F.L. Boschke, Editor, Topics in current chemistry (plasma chemistry IV), Springer, Berlin, Germany (1983) 59.
[14] R.M. Young, E. Pfender, Generation and behavior of fine particles in thermal plasma, Plasma Chem Plasma Process, 5 (1985) 1.
[15] G. Dransfield, Plasma production and novel processing to ultrafine ceramic powders, Ceramic technology international, Sterling, Malaysia, (1992) 71.
[16] Y. Sakka. H. Okuyama. T. Uchikoshi and S. Ohno, Synthesis and characterization of Fe and composite Fe-TiN nanoparticles by dc arc-plasma , Journal of Alloys and Compounds 346 (2002) 285.
[17] J. Karthikeyan, C.C Berndt, J. Tikkanen, S. Reddy, H. Herman, Plasma spray synthesis of nanomaterial powders and deposits, Materials Science and Engineering A, 238 (1997) 275.
[18] P. V. Ananthapadmanabhan, K. P. Sreekumar, N. Venkatramani, P. K. Sinha and Patrick R. Taylor, Characterization of plasma-synthesized alumina, Journal of Alloys and Compounds 244 (1996) 70.
[19] R. Suryanarayanan, Plasma Spraying: Theory and Applications, World Scientific, Singapore, 1993.
[20] P.G. Tsantrizos, Thermal Spray: International Advances in Coating Technology, ASM, OH, 1992, pp. 195–199.
[21] N. Ohtake and M. Yoshikawa, Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere, J. Electrochem. Soc. 2 (3) (1990) 717.
[22] O.M. Grebtsova, E.P. Domashneva, E.N. Kurtin and A.A. Budanov, Plasma chemical synthesis of oxides in the Y-Ba-Cu-O system, Sov. Pow. Met. Met. Ceram. 31 (10) (1992) 822.
capter 3
[1] Zhong Lin Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, 16 (2004) 829.
[2] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Catalytic growth of Zinc Oxide nanowires by vapor transport, Adv. Mater. 13 (2001) 113.
[3] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett. 80 (2002) 4232.
[4] C. Ronning, N. G. Shang, I. Gerhards, H. Hofsass, and M. Seibt, Nucleation mechanism of the seed of tetrapod ZnO nanostructures, J. Appl. Phys. 98 (2005) 034307.
[5] Y. B. Li, Y. Bando, T. Sato and K. Kurashima, ZnO nanobelts grown on Si substrate, Appl. Phys. Lett. 81 (2002) , 144.
[6] C. Borchers, S. Muller, D. Stichtenoth, D. Schwen, and C. Ronning, Catalyst-Nanostructure Interaction in Growth of 1-D ZnO Nanostructures, J. Phys. Chem. B 110, (2006) 1656.
[7] X. Y. Kong, and Z. L. Wang, Polar-surface dominated ZnO nanobelts and the electrostatic energy induced nanohelixes/nanosprings, Appl. Phys. Lett. 84 (2004) 975.
[8] X. Y. Kong, and Z. L. Wang, Spontaneous Polarization and Helical Nanosprings of Piezoelectric Nanobelts, Nano Lett. 3, (2003) 1625.
[9] X. Y. Kong, Y. Ding, R. S. Yang, and Z. L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts, Science 303, (2004) 1348.
[10] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu, Optical properties of the ZnO nanotubes synthesized via vapor phase growth, Appl. Phys. Lett. 83, (2003) 1689.
[11] M. Shiojiri and C. Kaito, Structure and growth of ZnO smoke particles prepared by gas evaporation technique, J. Cryst. Growth 52 (1981) 173.
[12] H. Iwanaga, M. Fujii, and S. Takeuchi, Growth model of tetrapod zinc oxide particles, J. Cryst. Growth 134 (1993) 275.
[13] M. Fujii, H. Iwanaga, M. Ichihara, and S. Takeuchi, Structure of tetrapod-like ZnO crystals, J. Cryst. Growth 128 (1993) 1095.
[14] S. Takeuchi, H. Iwanaga, and M. Fujii, Octahedral multiple-twin model of tetrapod ZnO crystals, Philos. Mag. A 69 (1994) 1125.
[15] H. Iwanaga, M. Fujii, M. Ichihara, and S. Takeuchi, Some evidence for the octa-twin model of tetrapod ZnO particles, J. Cryst. Growth 141 (1994) 234.
[16] Y. Dai, Y. Zhang, and Z. L. Wang, The octa-twin tetraleg ZnO nanostructures, Solid State Commun. 126 (2003) 629.
[17] D. W. Zeng, C. S. Xie, B. L. Zhu, R. Jiang, X. Chen, W. L. Song, J. B. Wang, and J. Shi, Controlled Growth of ZnO Nanomaterials via Doping Sb, J. Cryst. Growth 266, (2004) 511.
[18] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett. 68 (1996) 403.
[19] E.G. Bylander, Surface effects on the low-energy cathodoluminescence of zinc oxide, J. Appl. Phys. 49 (1978) 1188.
[20] M. Liu, A.H. Kitai, P. Mascher, Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese, J. Lumin. 54 (1992) 35.
[21] K. Vanheusden, W. L. Warren, C.H. Seager, D. R. Tallant, Mechanisms behind green photoluminescence in ZnO phosphor powders, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79(10)(1996) 15.
[22] B. Yu, C. Zhu, F. Gan, and Y. Huang, “Electron spin resonance properties of ZnO microcrystallites.” Mater. Lett. 33 (1998) 247.
[23] A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission, J. Lumin. 87-89, (2000) 454.
[24] B. Lin, Z. Fu, Y. Jia, and G. Liao, Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions, J. Electrochem. Soc. 148(3)(2001) G110.
[25] M.N. Jung, S.Y. Ha, S.H. Park, M. Yang, H.S. Kim, W.H. Lee, T. Yao, J.H. Chang, Investigation of the luminescence properties of ZnO tetrapods and clusters grown on Si substrates, Physica E, 31 (2006) 187.
[26] W. D. Yu, X. M. Li, and X. D. Gao, Self-catalytic synthesis and photoluminescence of ZnO nanocrystal substrates, Applied Physics Letters, 84 (2004) 2658.
[27] B. J. Jin, S. Im, and S. Y. Lee, Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films 366 (2000) 107.
[28] H. Yan, R. He, S. Mao, Peidong Yang, Advanced Materials, Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals, 15, No.5, (2003) 402.
[29] V.A.L. Roy, W. K. Chan, Luminescent and structural properties of ZnO nanorods prepared under different conditions, Applied Physics Letters, 83, No.1, (2003) 141.
[30] V.A.L. Roy, A. B. Djurišić, Magnetic properties of Mn doped ZnO tetrapod structures, Applied Physics Letters, 84, No.5, (2004) 756.
[31] A.B. Djurišić, Y.H. Leung, W.C.H. Choy, K.W. Cheah and W.K. Chan, Visible photoluminescence in ZnO tetrapod and multipod structures, Appl. Phys. Lett. 84 (2004) 2635.
[32] N. Serpone and E. Pellizzetti, Photocatalysis: Fundamentals and Applications (John Wiley & Sons, New York, 1989).
[33] M. Kaneko and I. Okura, Photocatalysis: Science and Technology (Springer, Berlin, 2002).
[34] U. Szewzyk, R. Szewzyk, W. Manz, K.H. Schleifer, Microbiological safety of drinking water, Ann. Rev. Microbiol. 54 (2000) 81.
[35] G.R. Finch, M. Belosevic, Controlling Giardia and Cryptosporidium in drinking water by microbial reduction processes, Can. J. Civ. Eng. 28 (2001) 67.
[36] S. Steenken, Addition-elimination paths in electron-transfer reactions between radicals and molecules, J. Chem. Soc., Faraday Trans. 1, 83 (1987) 113.
[37] M. Schiavello, Some working principles of heterogeneous photocatalysis by semiconductors, Electrochim. Acta, 38 (1993) 11.
[38] S. Chakrabarti, B. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst, J. Hazardous Materials B, 112 (2004) 269.
[39] Y.J. Jang, C. Simer, T. Ohm, Comparison of zinc oxide nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue , Materials Research Bulletin, 41 (2006) 67.
[40] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahenemann, Environmental Applications of Semiconductor Photocatalysis, Chem. Rev 95 (1995) 69.
[41] B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 79 (2001) 943.
[42] S. Lakshmi, R. Renganathan and S. Fujita, Study on TiO2-mediate photocatalytic degradation of methylene blue, J. Photochem. Photobiol. A. Chem. 88 (1995) 163.
[43] N. Sobana, M. Swaminathan, The effect of operational parameters on the photocatalytic decolourization of acid red 18 by ZnO, Sep. Purif. Technol., 56 (2007) 101.
[44] A. C. Dodd, A. J. McKinley, M. Saunders and T. Tsuzuki, Effect of particle size on the photocatalytic activity of nanoparticulate zinc oxide, J. Nanoparticle Research, 8 (2006) 43.
[45] J. Wang, G. Wang, and J. Zhao, Nonmetal-metal transition in Znn (n=2–20) clusters, Phys. Rev. A 68 (2003) 013201.
[46] Y. Zhang, H. B. Jia, X. H. Luo, X. Hong Chen, D. P. Yu, and R. M. Wang, Synthesis, Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires, J. Phys. Chem. B 107 (2003) 8289.
[47] H. Yan, R. He, J. Pham, and P. Yang, Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals, Adv. Mater. 15 (2003) 402.
[48] J. Doménech, A. Prieto, Stability of zinc oxide particles in aqueous suspensions under UV illumination, J. Phys. Chem., 90 (1986) 1123.
[49] D.C. Look, Recent advances in ZnO materials and devices, Mater. Sci. Eng., B80 (2000) 383.
[50] R.E. Sherriff, D.C. Reynolds, C.C. Look, B. Jogai, J.E. Hoelscher, T.C. Collins, G. Cantwell, W.C. Harsch, Photoluminescence measurements from the two polar faces of ZnO, J. Appl. Phys., 88 (2000) 3454.
[51] D.C. Reynolds, D.C. Look, B.Jogi, H. Morkoc, Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN , Solid State Commun., 101 (1997) 643.
[52] J. Mass, M. Avella, J. Jiménez, M. Callahan, E. Grant, K. Rakes, D. Bliss, B. Wang, Cathodoluminescence characterization of hydrothermal ZnO crystals, Superlattices and Microstructure, 38 (2005) 223.
[53] W. Zheng, Y. Liao, L. Li, Q. Yu, Structure and properties of ZnO films grown on Si substrates with low temperature buffer layers, Applied Surface Science, 253 (2006) 2765.
[54] H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films , J. Appl. Phys., 95 (2004) 1246.
[55] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, Mechanisms behind green Photoluminescence in ZnO phosphor powders, J.Appl.Phys., 79 (1996) 7983.
[56] J. Q. Hu, Y. Bando, J.H. Zhan, Y.B. Li, T. Sekiguchi, Two-dimensional micrometer-sized single crystalline ZnO thin nanosheets, Appl. Phys. Lett. 83 (2003) 4414.
[57] R.C. Wang, C.P. Liu, J.L. Huang, ZnO Hexagonal Arrays of Nanowires Grown on Nanorods, Appl. Phys. Lett., 86 (2005) 251104.
[58] M.V. Rao, K.Rajeshwar, V.R. Verneker, J. DuBow, Photosynthetic production of hydrogen and hydrogen peroxide on semiconducting oxide grains in aqueous solutions, J. Phys. Chem. 84 (1980) 1987.
[59] R. Comparelli, E.Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, A.Agostiano, UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates, Applied Catalysis B: Environmental 60 (2005) 1.
chapter 4
[1] W. Barthlott and C. Neinhuis, Purity of the sacred lotus or escape from contamination in biological surfaces, Planta 202 (1997) 1.
[2] S. Shibuich, T. Yamamoto, T. Onda and K. Tsujii, Super Water- and Oil-Repellent Surfaces Resulting from Fractal Structure, J. Colloid Int. Sci. 208 (1998) 287.
[3] K. Tsujii. T. Yamamoto, T. Onda and S. Shibuichi, Super Oil-Repellent Surfaces, Angew. Chem. Int. Ed. Engl. 36 (1997) 1011.
[4] H. Li, X. Wang, Y. Song, Y. Liu, Q. Li, L. Jiang and D. Zhu, Super-Amphiphobic Aligned Carbon Nanotube Films, Angew. Chem. 113, (2001) 1793.
[5] Y. Liu, X. Chen and J.H. Xin, Super-hydrophobic surfaces from a simple coating method, a bionic nanoengineering approach, Nanotechnology 17 (2006) 3259.
[6] K.P. Kühn, I. F. Chaberny, K. Massholder, M. Stickler, V.W. Benz, H.G. Sonntag and L.Erdinger, Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light, Chemosphere 53 (2003) 71.
[7] H. F Lin, S.C. Liao and S.W. Hung, The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst, J. Photoch. Photobio A, Chemistry 174 (2005) 82.
[8] J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu and H. Kojima, Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry, J. Ferment Bioeng. 86 (1998) 521.
[9] O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide, Int. J. Inorg. Mater. 3 (2001) 643.
[10] A. Mills and S. Le Hunte, An Overview of Semiconductor Photocatalysis, J. Photochem. Photobiol. A 108 (1997) 1.
[11] H.F. Lin, S.C. Liao and C.T. Hua, A New Approach to Synthesize ZnO Tetrapod-like Nanoparticles with DC Thermal Plasma Technique, J. Cryst. Growth 311 (2009) 1378.
[12] S.C. Liao, H.F. Lin, S. W. Hung and C.T. Hua, dc thermal plasma synthesis and properties of zinc oxide nanorods, J. Vac. Sci. Technol. B 24 (2006) 1322.
[13] S.C. Liao, H. F Lin and S.W. Hung, Mothod for manufacturing nanopowders of oxide through dc plasma thermal reaction. US patent # 7125537.
[14] C.T. Hsieh, J.M. Chen, R.R. Kuo,T.S. Lin and C.F. Wu, Influence of surface roughness on water- and oil-repellent surfaces coated with nanoparticles, Appl. Surf. Sci. 240 (2005) 318.
[15] V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis and C. Fotakis, Biomimetic, artificial surfaces quantitatively reproduce the water repellency of a lotus leaf, Adv. Mater. 20 (2008) 4049.
[16] L. Fen, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang and D. Zhu, Super-Hydrophobic Surfaces, from Natural to Artificial, Adv. Mater. 24 (2002) 1857.
[17] Y. Li, W. Cai, G. Duan, B. Cao, F. Sun and F. Lu, Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method, J. Colloid Int. Sci. 287 (2005) 634.
[18] R. Wang, N. Sakai, A. Fujishima, T. Watanalbe and K. Hashimoto, Study of Surface Wettability Conversion on TiO2 Single Crystal Surfaces, J. phys. Chem. B 103 (1999) 2188.
[19] H. Liu, L. Feng, J. Zhai, L. Jiang, and D. B. Zhu, Reversible wettability of a chemical vapor deposition prepared ZnO film between superhydrophobicity and superhydrophilicity, Langmuir 20 (2004) 5659.
[20] R.D. Sun, A. Nakajima, A. Fujishima, T. Watanabe and K. Hashimoto, Photoinduced Surface Wettability Conversion of ZnO and TiO2 Thin Films, J. Phys. Chem. B 105 (2001) 1984.
[21] A.N. Shultz, W. Jang, W.M. Hetherington, D.R. Baer, L.Q. Wang and M.H. Engelhard, Comparative second harmonic generation and X-ray photoelectron spectroscopy studies of the UV creation and O2 healing of Ti3+ defects on (110) rutile TiO2 surfaces, Surf. Sci. 339 (1995) 114.
[22] A. Nakajima, K. Hashimoto and T. Watanabe, Transparent Superhydrophobic Thin Films with Self-Cleaning Properties, Langmuir 16 (2000) 7044.
[23] C. Neinhuis and W. Barthlott, Characterization and distribution of water-repellent. self-cleaning plant surfaces, W. Ann. Bot. 79 (1997) 667.
[24] C.D. Jaeger and A.J. Bard, Spin Trapping and Electron Spin Resonance Detection of Radical Intermediates in the Photodecomposition of Water at TiO2 Particulate Systems, J. Phys. Chem. 83 (1979) 3146.
[25] J.R. Harbour and M.L. Hair, Transient radicals in heterogeneous systems, detection by spin trapping, Adv. Colloid Interf. Sci. 24 (1986) 103.
[26] J.C. Ireland and J. Valinieks, Rapid measurement of aqueous hydroxyl radical concentrations in steady state HO• flux systems, Chemosphere 25 (1992) 383.
[27] R. Cai, K. Hashimoto and A. Fujishima, Conversion of photogenerated superoxide anion into hydrogen peroxide in TiO2 suspension system, J. Electroanal. Chem. 326 (1992) 345.
chapter 5
[1] T. Minami, S. Takata, H. Sato, H. Sonohara, Properties of Transparent Zinc-Stannate Conducting Films Prepared by Radio-Frequency Magnetron Sputtering., J. Vac. Sci. Technol. A, 13(3) (1995) 1095.
[2] I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev, T. Donchev, Spray Pyrolysis Preparation and Humidity Sensing Characteristics of Spinel Zinc Stannate Thin Films., J. Solid State Chem. 128 (1997) 305.
[3] N. Nikoli´c, T. Sre´ckovi´c, M.M. Risti´c, The influence of mechanical activation on zinc stannate spinel formation. J. Eur Ceram. Soc., J. Eur. Ceram. Soc. 21 (2001) 2071.
[4] Modern Ferrite Technology: Crystal structures of Ferrites, 52-69.
[5] S.H. Wei and S. B. Zhang, First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO4 and AIVB2IIO4 spinel oxides., physical review B, 63 (2001) 045112.
[6] T. Hashemi, H.M. Al-Allak, J. Illingsworth, A.W. Brinkman, J. Woods, Sintering behavior of zinc stannate., J. Mater. Sci. Letters 9 (1990) 776.
[7] L. L. Y. Chang and R. C. kaldon, Vapor phase growth of Zn2SnO4 needle crystals., J. Amer. Ceram. Soc. 59 (1976) 275.
[8] R.E. Riman, in: J.J. Bentzen, J.B. Bilde-Sørensen, N. Christiansen, A. Horsewell, B. Ralph (Eds.), Proceedings of the 11th Risø International Symposium on Metallurgy and Materials Science: Structural Ceramics-Processing, Microstructure and Properties, Risø National Laboratory, Roskilde, Denmark, 1990, pp. 111.
[9] Y. Yamada, Y. Seno, Y. Masuoka, K. Yamashita, Nitrogen oxides sensing characteristics of Zn2SnO4 thin film., Sensors Actuators B49 (1998) 248.
[10] A.A. Al-Shahrani, S. Abboudy, A.W. Brinkman, Absence of the Coulomb gap at the Fermi level in the variable-range hopping regime of zinc stannate polycrystalline systems., J. Phys. D: Appl. Phys. 29 (1996) 2165.
[11] N. Hiratsuka, A. Hosoi, H. Kobayashi, K. Kakizaki, Isobutane Gas Sensing Characteristics of Zinc-Tin Complex Oxide System., J. Ceram. Soc. Japan Int. Ed. 104 (1996) 1173.
[12] N. Hiratsuka, H. Kobayashi, H. Uchida, T. Katsube, Gas sensing characteristics of zinc-tin complex oxide thin films with spinel-type structure., J. Ceram. Soc. Japan. Int. Ed. 104 (1996) 1053.
[13] J. Fang, A. Hunag, P. Zhu, N. Xu, J.Xie, J. Chi, S. Feng, R. Xu, M.Wu, Hydrothermal preparation and characterization of Zn2SnO4 particles., Materials Research Bulletin, 36 (2001) 1391.
[14] W. Cun, W. Xinming, Z. Jincai, M. Bixian, S. Guoying, P. Pingan, F. Jiamo, Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4., J. Materials Science 37 (2002) 2989.
[15] S. Wang, Z. Yang, M. Lu , Y. Zhou, G. Zhou, Z. Qiu, S. Wang, H. Zhang, A. Zhang, Coprecipitation synthesis of hollow Zn2SnO4 spheres., Materials Letters 61 (2007) 3005.
[16] L. Wang, X. Zhang, X. Liao and W. Yang, A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties., Nanotechnology 16 (2005) 2928.
[17] J.X. Wang, S.S. Xie, Y. Gao, X.Q. Yan, D.F. Liu, H.J. Yuan, Z.P. Zhou, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures., Journal of Crystal Growth 267 (2004) 177.
[18] J.X. Wang, S.S. Xie, H.J. Yuan, X.Q. Yan, D.F. Liu, Y. Gao, Z.P. Zhou, L. Song, L.F. Liu, X.W. Zhao, X.Y. Dou, W.Y. Zhou, G. Wang, Synthesis, structure, and photoluminescence of Zn2SnO4 singlecrystal nanobelts and nanorings., Solid State Communications 131 (2004) 435.
[19] H.Q. Yan, R.R. He, J. Pham, P.D. Yang, Adv. Mater. Morphogenesis of One-Dimensional ZnO Nano- and Microcrystals., 15 (2003) 402.
[20] C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. Catalytic Growth of Semiconducting In2O3 Nanofibers., 13 (2001) 1330.
[21] J.Q. Hu, Y. Bando, J.H. Zhan, Y.B. Li, T. Sekiguchi, Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets, Appl. Phys. Lett. 83 (2003) 4414.
[22] H.J. Zhou, W.P. Cai, L.D. Zhang, Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica , Appl. Phys. Lett. 495 (1999) 75
[23] Y.B. Li, Y. Bando, T. sato, K. Kurashima, ZnO nanobelts grown on Si substrate., Appl. Phys. Lett. 81 (2002) 144.
[24] J.Q. Hu, X.L. Ma, N.G. Shang, Z.Y. Xie, N.B. Wong, C.S. Lee, S.T. Lee, Large-scale rapid oxidation synthesis of SnO2 nanoribbons., J. Phys. Chem. B. 106 (2002) 3823.
[25] T. Minami, H. Sonohara, S. Takata, H, Sato, Highly Transparent and Conductive Zinc-Stannate Thin Films Prepared by RF Magnetron Sputtering., Jpn. J. Appl. Phys. Part 1, 33 (1994) L1693.
[26] X. Z. Wu, P . Sheldon and T. J . Coutts, US Appl. 149 (1998) 32.
[27] F. Belliard, P . A. Connor and J . T. S . Irvine, Novel tin oxide-based anodes for Li-ion batteries. Solid State Ionics., Solid State Ionics 135 (2000) 163.
[28] Bing Tan, Elizabeth Toman, Yanguang Li, and Yiying Wu, Zinc Stannate (Zn2SnO4) Dye-Sensitized Solar Cells. J. Am. Chem. Soc., J. Am. Chem. Soc. 129 14 (2007) 4162.
[29] S. Jeedigunta, M.K. Singh, A. Kumar, M. Shamsuzzoha, Optical Properties of Zigzag Twinned Geometry of Zn2SnO4 Nanowires., J. Nanosci. Nanotechnol. 7 (2007) 486.
[30] E. Çetinörgü , Characteristics of filtered vacuum arc deposited ZnO-SnO2 thin films on room temperature substrate., Opt. Commun. 280 (2007) 114.
[31] D.L. Young, H. Moutinho, Y. Yan, T.J. Coutts, Growth and characterization of radio frequency magnetronsputter-deposited zinc stannate Zn2SnO4 thin films., J. Appl. Phys. 92 (2002) 310.
[32] E. Burstein, Anomalous Optical Absorption Limit in InSb., Phys. Rev. 93 (1954) 632.
[33] T.S. Moss, The interpretation of the properties of indium antimonide., Proc. Phys. Soc. London Sect. A 382 (1954) 775.