簡易檢索 / 詳目顯示

研究生: 賴韋安
Lai, Wei-An
論文名稱: 4x16陣列電容式對DNA分子之生醫感測器
A CMOS Capacitive Biosensor Array For DNA Detection
指導教授: 盧向成
Lu, Sheng-Cheng
口試委員: 劉承賢
邱一
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: CMOSMEMS電容式感測器生醫感測器DNA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了得到快速的生醫感測,我們透過MEMS與CMOS電路製程技術整合的概念,作為設計電容式生醫感測器的架構,並且不僅將感測單元與電路整合,在感測區域的製作僅使用CMOS標準電路製程,免去獨立後製程的步驟,實現一個只要在功能化修飾步驟稍加變動,就可以對各種生物分子或病菌細胞作感測,成為一晶片多用途的電容式生醫感測器。而四種不同電容值的感測電容面積大小依序為10×10〖 μm〗^2 、20×20 〖μm〗^2 、30×30 〖μm〗^2 、40×40 〖μm〗^2,電容值分別為10.06 fF、39.83 fF、91.05 fF與159.65 fF四種,感測電容與類比電路緩衝器,配合數位電路組合成4×4的陣列,共用一個類比緩衝輸出級,分別做出四組感測陣列區塊,總共是4×16個感測電容,更可以達到單一晶片同時做不同修飾或是不同標的物的量測,徹底的達到一晶片多用途的效果。
    我們選定使用DNA作為我們的測試目標,將經過修飾以後的晶片再加入互補端DNA以後,所量測濃度從1 fM (6.14 fg/ml)到1 nM (6.14ng/ml)所造成的電容變化,隨著濃度增加感測電容相對下降,而在加入非互補端DNA以後發現電容變化則是在一個小範圍內跳動,因此,我們可以說我們成功的實現了一個CMOS 4×16 電容式生醫感測陣列。


    第一章 緒論……………………………………………………1 1-1 研究動機………………………………………………1 1-2 CMOS-MEMS技術簡介……………………………………2 1-3 文獻回顧………………………………………………5 第二章 感測器原理與電路設計………………………………14 2-1 電容感測原理…………………………………………14 2-2 感測電容架構…………………………………………15 2-3 感測電路架構…………………………………………17 2-4 電路架構模擬…………………………………………21 2-5 晶片佈局與後模擬……………………………………23 第三章 生物實驗設計與測試…………………………………26 3-1 生醫材料簡介…………………………………………26 3-2 表面固定化測試………………………………………28 第四章 晶片量測與感測結果…………………………………33 4-1 晶片檢視與封裝………………………………………33 4-2 晶片量測………………………………………………36 4-3 量測分析………………………………………………45 4-4 雜訊分析………………………………………………56 第五章 結論與未來工作………………………………………57 參考文獻…………………………………………………………59

    [1] J. Wu, G. K. Fedder, and L. R. Carley, "A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer," IEEE Journal of Solid-State Circuits, vol. 39, pp. 722-730, 2004.
    [2] R. Mukhopadhyay, M. Lorentzen, J. Kjems, and F. Besenbacher, "Nanomechanical sensing of DNA sequences using piezoresistive cantilevers," Langmuir, vol. 21, pp. 8400-8408, 2005.
    [3] W. Shu, E. D. Laue, and A. A. Seshia, "Investigation of biotin-streptavidin binding interactions using microcantilever sensors," Biosensors and Bioelectronics, vol. 22, pp. 2003-2009, 2007.
    [4] C. Berggren, B. Bjarnason, and G. Johansson, "Capacitive biosensors," Electroanalysis, vol. 13, pp. 173-180, 2001.
    [5] E. Ghafar-Zadeh, M. Sawan, and D. Therriault, "CMOS based capacitive sensor laboratory-on-chip: a multidisciplinary approach," Analog Integrated Circuits and Signal Processing, vol. 59, pp. 1-12, 2009.
    [6] E. A. de Vasconcelos, N. G. Peres, C. O. Pereira, and V. L. da Silva, "Potential of a simplified measurement scheme and device structure for a low cost label-free point-of-care capacitive biosensor," Biosensors and Bioelectronics, vol. 25, pp. 870-876, 2009.
    [7] S. B. Prakash and P. Abshire, "On-chip capacitance sensing for cell monitoring applications," , IEEE Sensors Journal, vol. 7, pp. 440-447, 2007.
    [8] S. Loyprasert, P. Thavarungkul, P. Asawatreratanakul, B. Wongkittisuksa, C. Limsakul, and P. Kanatharana, "Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode," Biosensors and Bioelectronics, vol. 24, pp. 78-86, 2008.
    [9] W. Limbut, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, and P. Thavarungkul, "A comparative study of capacitive immunosensors based on self-assembled monolayers formed from thiourea, thioctic acid, and 3-mercaptopropionic acid," Biosensors and Bioelectronics, vol. 22, pp. 233-240, 2006.
    [10] E. Ghafar-Zadeh, M. Sawan, A. Shabani, M. Zourob, and V. Chodavarapu, "Bacteria growth monitoring through an on-chip capacitive sensor," Mixed-Signals, Sensors, and Systems Test Workshop, pp. 1-4, 2008.
    [11] A. Numnuam, P. Kanatharana, B. Mattiasson, P. Asawatreratanakul, B. Wongkittisuksa, C. Limsakul, and P. Thavarungkul, "Capacitive biosensor for quantification of trace amounts of DNA," Biosensors and Bioelectronics, vol. 24, pp. 2559-2565, 2009.
    [12] S. Carrara, V. Bhalla, C. Stagni, L. Benini, A. Ferretti, F. Valle, A. Gallotta, B. Ricco , and B. Samor, "Label-free cancer markers detection by capacitance biochip," Sensors and Actuators B: Chemical, vol. 136, pp. 163-172, 2009.
    [13] D. Berdat, A. C. M. Rodriguez, F. Herrera, and M. A. M. Gijs, "Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell," Lab Chip, vol. 8, pp. 302-308, 2007.
    [14] L. Yao, M. Hajj-Hassan, E. Ghafar-Zadeh, A. Shabani, V. Chodavarapu, and M. Zourob, "CMOS capactive sensor system for bacteria detection using phage organisms," Electrical and Computer Engineering,pp. 000877-000880, 2008.
    [15] S. M. Radke and E. C. Alocilja, "A microfabricated biosensor for detecting foodborne bioterrorism agents," IEEE Sensors Journal, vol. 5, pp. 744-750, 2005.
    [16] A. Qureshi, J. H. Niazi, S. Kallempudi, and Y. Gurbuz, "Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays," Biosensors and Bioelectronics, vol. 25, pp. 2318-2323, 2010.
    [17] S. M. Radke and E. C. Alocilja, "Design and fabrication of a microimpedance biosensor for bacterial detection," IEEE Sensors Journal, vol. 4, pp. 434-440, 2004.
    [18] S. K. Arya, G. Chornokur, M. Venugopal, and S. Bhansali, "Dithiobis (succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol," Biosensors and Bioelectronics, vol. 25, pp. 2296-2301, 2010.
    [19] Z. Zou, J. Kai, M. J. Rust, J. Han, and C. H. Ahn, "Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement," Sensors and Actuators A: Physical, vol. 136, pp. 518-526, 2007.
    [20] M. Javanmard, A. H. Talasaz, M. Nemat-Gorgani, F. Pease, M. Ronaghi, and R. W. Davis, "Electrical detection of protein biomarkers using bioactivated microfluidic channels," Lab Chip, vol. 9, pp. 1429-1434, 2009.
    [21] C. H. Lin, C. H. Hung, C. Y. Hsiao, H. C. Lin, F. H. Ko, and Y. S. Yang, "Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA," Biosensors and Bioelectronics, vol. 24, pp. 3019-3024, 2009.
    [22] S. C. L. Michael, Y. C. Chen, and P. C. Huang, "5×5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine," Biosensors and Bioelectronics, vol 26, pp. 1093-1097, 2010.
    [23] C. Chai, J. Lee, and P. Takhistov, "Direct detection of the biological toxin in acidic environment by electrochemical impedimetric immunosensor," Sensors, vol. 10, pp. 11414-11427, 2010.
    [24] V. K. S. Hsiao, J. R. Waldeisen, Y. Zheng, P. F. Lloyd, T. J. Bunning, and T. J. Huang, "Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings: fabrication and application in biosensing," J. Mater. Chem., vol. 17, pp. 4896-4901, 2007.
    [25] S. Ingebrandt and A. Offenhausser, "Label free detection of DNA using field effect transistors," physica status solidi (a), vol. 203, pp. 3399-3411, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE