簡易檢索 / 詳目顯示

研究生: 劉依佩
Yi-Pei Liu
論文名稱: 以化學共沉法製備摻雜鑭及鐠之鐵酸鉍陶瓷性質探討
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 113
中文關鍵詞: 鐵酸鉍複鐵式材料化學共沉法
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用化學共沉法製備鐵酸鉍塊材(BiFeO3),並分別摻雜鑭元素及鐠元素。本實驗在製程上選擇化學共沉法,除了易於控制成分外,共沉法得到的微細粉末能降低材料的結晶溫度,相對於傳統固態反應法可以在比較低的製程溫度得到純相的鐵酸鉍塊材,本實驗的鐵酸鉍粉末最低在450℃即可結晶。摻雜鑭元素及鐠元素的鐵酸鉍塊材,Bi1-xLaxFeO3(BLFO)和Bi1-x PrxFeO3 (BPFO)選擇的成分為x=0.1和0.2,探討不同成分及不同摻雜離子對電性及磁性的影響。由結果得知,當x=0.2時,BLFO和BPFO的結晶相從菱形晶轉變為正方晶,在電性表現方面,BLFO和BPFO的介電常數都比BFO高,BLFO介電常數隨著摻雜濃度增加而變大,在1MHz下,x=0.2,燒結850℃後可得到最大的介電常數值,k=120;BLFO和BPFO的散逸因子也都比BFO低,在1MHz下,BPFO在x=0.2燒結850℃後可得到最低的散逸因子0.01。在磁性表現方面,BLFO和BPFO都表現出鐵磁特性,BLFO的磁化量隨著摻雜鑭濃度增加而增加,BPFO在x=0.2時的磁化量是各成分最高的,在15,000Oe下磁化量為4.16(emu/cm3)


    目錄 摘要 I 目錄 II 圖目錄 VII 表目錄 X 第1章 前言 1 1.1 簡介 1 1.2 研究動機 2 第2章 文獻回顧 4 2.1 複鐵式材料簡介 4 2.1.1 鐵電性質 4 2.1.2 過渡金屬離子化合物的磁特性 6 2.1.3 超交換作用 7 2.1.4 複鐵式材料 8 2.1.5 磁電效應 11 2.2 鐵酸鉍的特性 15 2.2.1 晶格結構 15 2.2.2 鐵電特性 16 2.2.3 磁特性 17 2.3 介電性質 18 2.3.1 極化機制 19 2.3.2 介電常數和介電損失 20 2.3.3 漏電流機制 22 2.4 鐵酸鉍粉末之合成方法 23 2.4.1 固態反應法 24 2.4.2 Pechini製程 24 2.4.3 化學共沈法 25 2.5 固相燒結 27 第3章 實驗方法 38 3.1 鐵酸鉍塊材製備 38 3.1.1 粉末之製作 38 3.1.2 煆燒 39 3.1.3 試片壓製 39 3.1.4 燒結 39 3.2 鐵酸鉍摻雜鑭元素塊材之製備 40 3.3 鐵酸鉍摻雜鐠元素塊材之製備 40 3.4 實驗量測 40 3.4.1 感應耦合電漿質譜分析儀 40 3.4.2 動態光散射粒徑分析儀 41 3.4.3 熱差/熱重(TG/DTA)熱分析 41 3.4.4密度量測 42 3.4.5 晶相結構 42 3.4.6 微觀結構 43 3.4.7 介電常數及散逸因子 44 3.4.8 外加電場(E)對塊材內部電流密度(J)之影響 44 3.4.9 P-E電滯曲線 44 3.4.10 M-H磁滯曲線 45 第4章 結果與討論 50 4.1 BiFeO3塊材性質 50 4.1.1 感應耦合電漿質譜分析儀(I.C.P.-MS)成分分析 50 4.1.2 動態光散射(DLS)粒徑分析 50 4.1.3 TG/DTA熱分析 51 4.1.4 X-ray繞射分析 51 4.1.5 燒結密度分析 51 4.1.6 SEM分析 52 4.1.7 低頻介電常數及散逸因子分析 52 4.1.8 漏電流性質 53 4.1.9 鐵電性質 54 4.1.10 磁滯曲線分析 54 4.2 不同鑭(La)摻雜量對BFO影響 54 4.2.1 感應耦合電漿質譜分析儀(I.C.P.-MS)成分分析 55 4.2.2 動態光散射(DLS)粒徑分析 55 4.2.3 TG/DTA熱分析 56 4.2.4 X-ray繞射分析 56 4.2.5 燒結密度分析 57 4.2.6 SEM分析 58 4.2.7 低頻介電常數及散逸因子(tan δ)分析 59 4.2.8 漏電流性質 60 4.2.9 鐵電性質 61 4.2.10 磁滯曲線分析 61 4.3 不同鐠(Pr)摻雜量對BFO影響 62 4.3.1 感應耦合電漿質譜分析儀(I.C.P.-MS)成分分析 62 4.3.2 動態光散射(DLS)粒徑分析 62 4.3.3 TG/DTA熱分析 63 4.3.4 X-ray繞射分析 63 4.3.5 燒結密度分析 64 4.3.6 SEM分析 64 4.3.7 低頻介電常數及散逸因子(tan δ)分析 65 4.3.8 漏電流性質 66 4.3.9 鐵電性質 66 4.3.10 磁滯曲線分析 67 4.4 不同摻雜離子對於BFO的影響 69 4.4.1 晶體結構 69 4.4.2 微觀結構 69 4.4.3 介電常數及散逸因子 70 4.4.4 漏電流性質 70 4.4.5 鐵電性 70 4.4.6 磁滯曲線 71 第5章 結論 72 第6章 參考文獻 106

    [1] Yet-Ming Chiang, Dunbar P. Birnie III, W. David Kingery, “Physical Ceramics Principles for Ceramic Science and Engineering” p.42 (1997) John Wiley & Sons
    [2] B.Jaffe, W.R. Cook, and H. Jaffe, “Piezoelectric ceramics” p.50 (1971) Academic Press, New York
    [3] David Jiles, “Introduction to Magnetism and Magnetic Materials” p.32 (1991) Chapman & Hall
    [4] J.B.Goodenough, “Magnetism and the chemical bond” Interscience Publishers, New York (1963)
    [5] W. Prellier, M. P. Singh, and P. Murugavel, “The single-phase multiferroic oxides: from bulk to thin film”, J. Phys. : Condens. Matter 17 R803-R832 (2005)
    [6] E. Ascher, H. Rieder, H. Schmid, and H. Stössel, “Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I”, J. Appl. Phys. 37 1404 (1996)
    [7] G. A. Smolensky, A. I. Agranovskaya, and V. A. Isupov, “New ferroelectrics of complex compound”, Sov. Phys.—Solid State 1 149 (1959)
    [8] G. A. Smolensky, V. A. Isupov, N. N. Krainik, and A. I. Agranovskaya, “Concerning the Coexistance of the Ferroelectric and Ferrimagnetic States”, Isv. Akad. Nauk SSSR, Ser Fiz. 25 1333 (1961)
    [9] W. Brixel, J. P. Rivera, A. Steiner, and H. Schmid, “Magnetic fieldinduced magnetoelectric effects, (ME)H, in the perovskites Pb2CoWO6 and Pb2FeTaO6”, Ferroelectrics 79 201 (1988)
    [10] D.N. Astrov, B.I. Al'Shin, R.V. Zorin and L.A. Drobyshev, “Spontaneous Magnetoelectric Effect”, Sov. Phys. JETP 28, 1123 (1969)
    [11] D. I. Khomskii, “Magnetism and ferroelectricity: why do they so seldom coexist?”, Bull. Am. Phys. Soc. C21.002 (2001)
    [12] Nicola A. Hill, “Density Functional Studies of Multiferroic Magnetoelectrics“, Annu. Rev. Mater. Res. 32 1-37 (2002)
    [13] R. E. Cohen, “Origin of ferroelectricity in perovskite oxides”, Nature 358 136-138 (1992)
    [14] T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, “Magnetocapacitance effect in multiferroic BiMnO3“, Phys. Rev. B 67 180401(R) (2003)
    [15] R. Seshadri and Nicola A. Hill, “Visualizing the Role of Bi 6s “Lone Pairs” in the Off-Center Distortion in Ferromagnetic BiMnO3”, Chem. Mater. 13 2892-2899(2001)
    [16] R. Kajimoto, H. Yoshizawa, H. Shintani, T. Kimura, and Y. Tokura, “Erratum: Magnetic structure of TbMnO3 by neutron diffraction”, Phys. Rev. B 70 012401 (2004)
    [17] B. B. Van Aken, A. Meetsma, and T. T. M. Palstra, “Hexagonal YMnO3”, Acta Crystallogr. C 57 230 (2001)
    [18] H. L. Yakel, W. C. Koehler, E. F. Bertaut, and E. F. Forrat, “On the Crystal Structure of the Manganese(III) Trioxides of the Heavy Lanthanides and Yttrium”, Acta Crystallogr. 16 957 (1963)
    [19]E. F. Bertaut, and F. Forrat, “On the Deformations in the perovskite containing Rare earths and of Trivalent Transition Metals”, J. Phys. Radium 20 404 (1956)
    [20]E.F. Bertaut, F. Forrat and P. Fang, “Yttrium and Rare earth Manganites: A New Class of Ferroelectrics”, C. R. Acad. Sci. 256 1958 (1963)
    [21] Th. Lonkai, D. G. Tomuta, U. Amann, J. Ihringer, R. W. A. Hendrikx, D. M. Többens, and J. A. Mydosh, “Development of the high-temperature phase of hexagonal manganites”, Phys.Rev. B 69 134108 (2004)
    [22] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429 392 (2004)
    [23] N. Hur, S. Park, P. A. Sharma, S. Guha, and S-W. Cheong, “Colossal Magnetodielectric Effects in DyMn2O5”, Phys. Rev. Lett. 93 107207 (2004)
    [24] M. Fiebig, “Revival of the magnetoelectric effect”, J. Phys. D: Appl. Phys. 38 R123-R152 (2005)
    [25] G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, “Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides”, Phys. Rev. B 65 134402 (2002)
    [26] I. E. Dzyaloshinskii, “On the Magneto-electrical effects in antiferromagnets”, Sov. Phys. -JETP 10 628 (1959)
    [27] B. I. Aľshin and D. N. Astrov, “Magnetoelectric effect in titanium oxide Ti2O3”, Sov. Phys. -JETP 17 809 (1963)
    [28] G. T. Rado, “Observation and possible mechanisms of magnetoelectric effects in a ferromagnet”, Phys. Rev. Lett. 13 335 (1964)
    [29] J. Van den Boomgaard, D. R. Terrell, R. A. J. Born and H. F. J. I. Giller, “An in situ grown eutectic magnetoelectric composite material Part I Composition and unidirectional solidification”, J. Mater. Sci. 9 1705 (1974)
    [30] J. Van den Boomgaard, A. M. J. G. van Run, and J. van Suchtelen, “Piezoelectric-piezomagnetic composites with magnetoelectric effect”, Ferroelectrics 14 727 (1976)
    [31] J. Van den Boomgaard and R. A. J. Born, “A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4”, J. Mater. Sci. 13 1538 (1978)
    [32] S. Dong, J.F. Li, and D. Viehland, “Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse–transverse modes”, J. Appl. Phys. 95 2625 (2004)
    [33] B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A. K. Zvezdin, and D. Viehland, “Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order”, Phys. Rev. B 69 064114 (2004)
    [34] F. Kubel and H. Schmid, “Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3”, Acta Crystallogr Sect. B 46 698 (1990)
    [35] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science 299 1719 (2003)
    [36] G. A. Smolenskii and I. Chupis, “Ferroelectromagnets”, Sov. Phys. Usp. 25 475 (1982)
    [37] J. F. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin, and D. Viehland, “Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitiaxial-induced transitions”, Appl. Phys. Lett. 84 5261 (2004)
    [38] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett. 84 1731 (2004)
    [39] G. A. Gehring, “On the Microscopic Theory of the Magnetoelectric Effect”, Ferroelectrics 161 275 (1994)
    [40] J. B. Goodenough, “Longo Landolt–Börnstein New Series Group” III/vol 4a (New York: Springer) (1978)
    [41] V. R. Palkar, Darshan C. Kundaliya, and S. K. Malik, “Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system”, J. Appl. Phys. 93 4337 (2003)
    [42] W. J. Merz, “The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals”, Phys. Rev. 76 1221 (1949)
    [43] S. Hoshino, Y. Mitsui, F. Jona, and R. Pepinsky, “Dielectric and Thermal Study of Tri-Glycine Sulfate and Tri-Glycine Fluoberyllate”, Phys. Rev., 107 1255 (1957)
    [44] A. J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and applications”, p52-55 and p61-62. (1990)
    [45] 李雅明, “固態電子學” 全華科技 (1995)
    [46] 吳朗, “電子陶瓷-介電” 全新資訊圖書 (1994)
    [47] 施修正, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究” 清華大學 博士論文 (1999)
    [48] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky barrier effects in the electronic conduction of sol–gel derived lead zirconate titanate thin film capacitors”, J. Appl. Phys. 84 5005 (1998)
    [49] I. Stolichnov and A. Tagantsev, “Space-charge influenced-injection model for conduction in Pb(ZrxTi1-x)O3 thin films”, J. Appl. Phys. 84 3216 (1998)
    [50] W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites” MRS Bulletin July p40-45 (1996)
    [51] M. P. Pechini, “Method of preparing lead and alkaline earch titanates and niobates and coating method using the same to form a capacitor”, U.S. Patent No. 3330697 July 11 (1967)
    [52] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, “Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route”, J. Am. Ceram. Soc. 88 1349-1352 (2005)
    [53]Y. Arai, “Chemistry of Powder Production” Chapman and Hall Inc. London (1991)
    [54] 汪建民, “陶瓷技術手冊(上)” 再版 p. 41中華民國粉末冶金協會與中華民國產業科技發展協進會 (1999)
    [55] R.L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, J. Appl. Phys. 32 787 (1967)
    [56] D. W. Budworth, “Theory of Pore Closurc During Sintering”, Trans. Brit. Ceram. Soc. 69 29 (1970)
    [57] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, “Introduction to Ceramics” Wiley (1975)
    [58] J. S. Kim, C. II Cheon, Y. N. Choi, and P. W. Jang, “Ferroelectric and ferromagnetic properties of BiFeO3–PrFeO3–PbTiO3 solid solutions”, J. Appl. Phys. 93 9263 (2003)
    [59] M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic”, Appl. Phys. Lett. 76 2764 (2000)
    [60] D. Lee, M. G. Kim, S. Ryu, and H. M. Jang, “Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films”, Appl. Phys. Lett. 86. 222903 (2005)
    [61] J. S. Kim, C. II Cheon, C. H. Lee, and P. W. Jang, “Weak ferromagnetism in the ferroelectric BiFeO3–ReFeO3–BaTiO3 solid solutions (Re = Dy,La)”, J. Appl. Phys. 96. 468 (2004)
    [62] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J.-M. Liu, and Z. G. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering”, Appl. Phys. Lett. 84, 1731 (2004).
    [63] C. Ederer, N. A. Spaldin, “Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite”, Phys. Rev. B 71 060401 (2005)
    [64] I. Sosnowska, T. Peterlin-Neumaier and E. Steichele, “Spiral magnetic ordering in bismuth ferrite”, J. Phys. C: solid State Phys. 15 4835 (1982)
    [65] R. Fehrenbacher and T. M. Rice, “Unusual Electronic Structure of PrBa2Cu3O7”, Phys. Rev. Lett. 70 3471 (1993)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE