簡易檢索 / 詳目顯示

研究生: 陳宥全
Chen, You Chiuan
論文名稱: 多自由度振動台之主動即時控制系統開發與應用
Development and application of active real-time system for the control of multi-degree-of-freedom shaking table
指導教授: 杜佳穎
Tu, Jia Ying
口試委員: 葉廷仁
Yeh, Ting Jen
洪崇展
Hung, Chung Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: 振動台主動即時測試
外文關鍵詞: shaking table, active real-time control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主旨在於開發、設計及建造多自由度振動台之新型主動、即時控制系統,以配合大型工程系統之進階動態測試需求。隨著近年來天災與工程事故頻傳,完備之動態測試以評估並保障工程產品之可靠度與安全性愈加重要。然而知名MTS與Instron公司所生產之測試設備與控制系統價格昂貴、內建控制器無法彈性地依測試需求做準確度調整。有鑑於此,本論文初步並全面性地探討振動台即時控制設備之開發與應用,內容包括機台規劃與搭建、動態分析與模擬、進階控制法設計、訊號與機電整合、自主測試功能開發,並探討即時測試中可能會遇到的各種控制、量測、運算、監測等等問題,以尋找解決方案。
    振動台廣泛常見於地震、土木工程實驗室,以模擬真實地震運動並測試結構之耐震表現。本論文搭建四軸致動器輸入、三自由度輸出之振動台,並推導其順向與反向運動學,以建立致動器伸縮量與振動台中心位移之關係式;在順向運動學推導中,我們提出忽略高次項誤差的方式,來簡化即時運算流程,進而設計進階狀態反饋控制器,以保持追蹤強健性;另使用dSPACE硬體設備,以開發即時控制與監測系統、配合動態測試需求。
    本研究開發之新型即時控制系統包含初始化設定、自調變輸入與控制參數等等自主功能;測試結果證明,無論振動台有無搭載試體,進階外迴路控制器較內建控制器更有效的保持追蹤強健性,促使動態測試結果更準確。未來將進一步應用本論文發展之即時控制技術,至國家地震中心之小型油壓振動台測試,以增加臺灣地震工程動態測試品值與能量。


    Development of real-time control system for multi-degree-of-freedom shaking table is considered in this study, in order to cope with advanced dynamic testing of large-scale engineering systems. In recent years, natural disasters and engineering accidents are frequently reported, high-quality dynamic tests to evaluate and ensure the reliability and security of engineered products, is increasingly important. However, the testing machines and control systems developed by the well-known MTS and Instron Corporation are expensive, and the built-in controller cannot be adjusted with flexibility according to the testing requirements. Therefore, the preliminary objective of this thesis is to investigate the development and application of shaking table real-time control systems, including mechanical design, construction, dynamic modeling and analysis, advanced controller design, sensing, and mechtronics. We also search for the solution to real-time issues associated with control, measurement, computation, monitoring and so on.
    Shaking tables are widely applied in earthquake and civil engineering laboratories to simulate seismic waves and to test the vibration-isolation performance of structural systems. This thesis builds a shaking table with four-axis inputs, three-degrees-of-freedom outputs. The derivation of forward and inverse kinematics is included, in order to establish the relation between actuator displacements and the shaking table position. In the forward kinematics, we ignore the high-order error terms in order to simplify the on-line computation. Then, advanced state feedback controller is developed to enhance the tracking robustness of the shaking table. The dSPACE hardware is used to develop real-time controllers and monitoring interfaces.
    The real-time control system developed in this thesis contains the functionality of initialization and adjustable control parameters, in order to promote the flexibility of executing dynamic tests. The experimental results prove that regardless of the shaking table with or without carrying structural specimen, the outer-loop state feedback controller is more effective than the built-in controller to keep the tracking accuracy. In the future, the real-time techniques developed in this thesis will be applied to control and testing of a small-scale hydraulic shaking table in National Center for Research on Earthquake Engineering, in order to enhance the testing quality of civil engineering research.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目標 6 1.4 本文架構 7 第二章 振動台系統之動態模型 8 2.1 振動台元件介紹 9 2.2 振動台系統之動態模型 11 2.2.1 雙軸振動台動態模型 12 2.2.2 四軸振動台運動學模型 16 2.3 電動缸之動態表達式與控制目標 19 第三章 振動台控制系統設計 22 3.1 控制理論介紹 22 3.1.1 PID控制器 22 3.1.2 狀態回授控制器 24 3.2 內迴路控制器設計 26 3.3 外迴路控制器設計 28 3.3.1 外迴路PID控制器 28 3.3.2 外迴路狀態回授控制器 29 第四章 振動台即時控制系統開發 30 4.1 機台與儀器介紹 32 4.2 dSPACE即時控制介面系統開發 34 4.2.1 電動缸的內迴路控制器及歸零定位設定 35 4.2.2 安全開關 37 4.3 即時控制介面功能介紹 41 4.4 系統識別 44 第五章 振動台動態模擬與測試 46 5.1 模擬結果 47 5.2 無負載之即時動態測試結果 50 5.3 有搭載試體之即時動態測試 53 5.4 討論 57 第六章 結論與未來工作 66 6.1結論 66 6.2未來工作 67 參考文獻 69 附錄 72

    1. Alemzadeh K, Raabe D. Prototyping Artificial Jaws for the Bristol Dento-Munch Robo-Simulator; `A parallel robot to test dental components and materials'. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007; 1453-1456.
    2. Toyota. Kinetics and compliance testing. 2012 [cited; Available from: http://www.toyota-motorsport.com/en/services-en/advanced-component-testing-en/full-car-road-simulator-mts-329-en.
    3. Tsai K-C, Loh C-H. Pseudo dynamic test of a 2D full-scale 3-story 3bay cft buckling braced frame. 2003 [cited; Available from: http://cft-brbf.ncree.org.tw/fs.html.
    4. Murthy DS. Electric Actuator Replace Hydraulics In Full-Flight Simulators Machine Design. Machine Design 2009 [cited; Available from: http://machinedesign.com/article/electric-actuators-replace-hydraulics-in-flight-simulators-0306.
    5. Hsu C-c, Fong I-k. Motion Control of a Hydraulic Stewart Platform with Compute Force Feedback. Journal of the Chinese Institute of Engineers 2001; 24:709-721.
    6. Severn RT. Development of European shaking tables. The 1755 Lisbon Earthquake: Revisited 2009; 7:351-362.
    7. Tagawa Y, Kajiwara K. Controller development for the E-Defense shaking table. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 2007; 221:171-181.
    8. Xue Q. Need of performance-based earthquake engineering in Taiwan: a lesson from the Chichi earthquake. Earthquake Engineering & Structural Dynamics 2000; 29(11):1609-1627.
    9. Williams MS, Blakeborough A. Laboratory testing of structures under dynamic loads: an introductory review. Philosophical Transactions of The Royal Society 2001; 359:1651-1669.
    10. Wang GK. Shaking Table Test of Full-Scale structure Controlled with Fluid Damper. Master. Dissertation, Department of Civil Engingneering, National Cheng kung University, 2002.
    11. Rakicevic Z, Bogdanovic A, Jurukovski D, Kammerer H, Nawrotzki P, Shaking Table Testing of A Steel Frame Structure Without and With GERB Prestressed Damping Devices, in Fifth Word Conference on Structural Control and Monitor. 2010: Tokyo ,Japan.
    12. Stewart D. A Platform with Six Degrees of Freedom. Proceedings of the Institution of Mechanical Engineers 1965; 180:371-386.
    13. Tsai TC. The design of Steward-Based applied to surgical operation robust. 2003.
    14. Thöndel E, Electric Motion Platform for Use in Simulation Technology – Design and Optimal Control of a Linear Electromechanical Actuator, in Proceedings of the World Congress on Engineering and Computer Science. 2010. p. 960-965.
    15. Sirouspour MR, Salcudean SE. On the nonlinear control of hydraulic servo-systems. Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on 2000; 2:1276-1282.
    16. Stoten DP, Gómez EG. Adaptive control of shaking tables using the minimal control synthesis algorithm. Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences; 359(1786):1697-1723.
    17. Liu WF. Research of Applying PID Theory to Position control of Slider Crank. master. Dissertation, Department of Electrical Engineering I-Shou University, 2004.
    18. Gómez E. Application of the MCS algorithm to the control system of the Bristol shaking table. PhD thesis. Dissertation, University of Bristol, 1999.
    19. Aghili F. A mechatronic testbed for revolute-joint prototypes of a manipulator. IEEE Transactions on Robotics 2006; 22(6):1265-1273.
    20. Bacic M. On hardware-in-the-loop simulation. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Seville, Spain, 2005; 3194-3198.
    21. Pegon P, Pinto AV. Pseudo-dynamic testing with substructuring at the ELSA Laboratory. Earthquake Engineering & Structural Dynamics 2000; 29(7):905-925.
    22. Pinto AV, Pegon P, Magonette G, Tsionis G. Pseudo-dynamic testing of bridges using non-linear substructuring. Earthquake Engineering & Structural Dynamics 2004; 33(11):1125-1146.
    23. Tu JY. Development of numerical-substructure-based and output-based substructuring controllers. Structural Control and Health Monitoring 2012.
    24. Wagg DJ, Stoten DP. Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm. Earthquake Engineering & Structural Dynamics 2001; 30(6):865-877.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE