簡易檢索 / 詳目顯示

研究生: 楊鴻傑
Yang, Hong-Jie
論文名稱: 銅與銅化合物奈米材料之形狀控制、性質分析與鋰離子電池的應用
Copper and Copper Compound Nanomaterials: Shape Control, Properties Analysis, and Lithium-Ion Battery Applications
指導教授: 段興宇
Tuan, Hsing-Yu
口試委員: 周更生
Chou, Kan-Sen
黃暄益
Huang, Hsuan-Yi
段興宇
Tuan, Hsing-Yu
曾院介
Tseng, Yuan-Chieh
吳文偉
Wu, Wen-Wei
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 139
中文關鍵詞: 銅奈米材料碲化銅鋰離子電池自組裝表面電漿共振
外文關鍵詞: copper nanomaterials, copper telluride, Lithium ion battery, self assembly, surface plasmon resonance
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們的研究主要分為三個主題。
    第一 : 銅奈米材料形狀控制與性質分析。我們使用氯化亞銅為前驅物,經由添加不同表面活性劑可分別於溶液相中合成出銅奈米線與銅奈米立方體,經由電子顯微鏡與紫外光-可見光吸收光譜來觀察奈米線成長過程並進一步提出成長機制,銅奈米線的電性與銅奈米線基板的表面增強拉曼光譜亦被分析。此外合成出的銅奈米立方體粒均分布十分均一(標準偏差為3.87 %),根據穿透式電子顯微鏡和小角度X光散射儀分析結果,這些銅奈米立方體傾向於自我組裝成二維或三維的菱形結構,我們亦使用銅奈米立方體為單元組件,去製作成銅薄膜,更進一步分析其電性。
    第二 : 碲化銅奈米材料形狀控制與性質分析。實心和空心的碲化銅奈米粒子可經由控制注射碲前驅物溶液的時間而分別合成出來,這兩種形狀的碲化銅奈米粒子由於在價帶上多餘的電洞(銅缺陷),造成於紅外光區有明顯的吸收峰(局部表面電漿共振效應),實心的碲化銅奈米粒子吸收峰波長位於1150奈米且莫耳消光系數為2.6 × 107 M−1 cm−1,空心的碲化銅奈米粒子吸收峰波長位於1200奈米且莫耳消光系數為2.7 × 107 M−1 cm−1。此外我們還可以經由氧化還原的方式去控制碲化銅奈米粒子結構中銅缺陷的程度,達到控制其表面電漿共振峰的強度以及位置。
    第三 : 矽(鍺)/銅自支撐奈米線織布於鋰離子電池的應用。使用高理論電容的矽(鍺)奈米線與高電導率的銅奈米線製作的自支撐奈米線織物電極可直接應用於鋰離子電池中的負極,這種特殊的電極結構擁有許多優點,與傳統電極比較其重量較輕,銅本身的高導電率和一維的奈米結構可方便電子傳輸,奈米線織布間的空隙可提供空間給予矽(鍺)奈米線於鋰化與去鋰化過程時產生的體積膨脹與壓縮。此外我們亦有進一步探討,製作奈米線織物電極時所使用的銅奈米線比例以及燒結溫度對電化學效率的影響。


    In this dissertation, we have three themes.
    First : Shape control and properties analysis of Cu nanomaterials. Cu nanowires and Cu nanocubes can be synthesized in solution phase by using CuCl as precursors with right surface ligands. Electron microscopy and UV-vis spectra were used to track the growth process of Cu nanowire and further proposed possible growth mechanism. In addition, the electrical property of single Cu nanowire and surface-enhanced Raman spectroscopy of Cu nanowire substrate had studied. The as-synthesized Cu nanocubes have a slightly truncated with an average edge length of 75.7 nm and a standard deviation of 3.87 %. Electron microscopy and Small-angle X-ray scattering characterizations were used to identify the self-assembled structures of Cu nanocubes. Based on analysis results, Cu nanocubes prefer self-assemble into 2D or 3D rhombohedral structure. Cu thin films composed of monodisperse Cu nanocubes were made by tilting the substrate in the Cu nanocube solution and controlled evaporation rate of toluene. Furthermore, the electrical properties of Cu thin films were also studied before and after thermal annealing.
    Second : Shape control and properties analysis of Cu2−xTe nanomaterials. Solid and hollow structures of Cu2−xTe nanocrystals can be synthesized by injection of a Te-TOP solution at different injection time. Both types of Cu2−xTe nanostructures exhibit an intense absorption peak (localized surface plasmon resonance, LSPR) in the NIR region, arising from excess holes in the valence band, with high molar extinction coefficients of 2.6 × 107 M−1 cm−1 at 1150 nm and 2.7 × 107 M−1 cm−1 at 1200 nm for the solid-type and hollow-type Cu2−xTe nanostructures, respectively. The LSPs band of the Cu2−xTe nanostructures can be fine tuned by post processing via oxidation and reduction methods (controlling their degree of copper deficiency).
    Third : Si(Ge)/Cu free standing nanowire fabric for lithium ion battery anodes. Si (Ge) based free standing nanowire fabric electrodes which are made by Si (Ge) nanowires with high theoretical capacity and Cu nanowires with high electric conductivity can be directly used as lithium ion battery anode electrodes. These special electrode structure have advantages of lighter weight than conventional electrodes fabricated by slurry process, good electron transfer offered by the Cu and the one dimensional nanostructure, and the space among the nanowires accommodating the volume contraction of Si (Ge) nanowires during alloying and dealloying process. In addition, the effect of the weight percentage of Cu nanowire and annealing temperature on the electrochemical performance had investigated.

    Abstract ……………………………………………………………………………Ⅰ 致謝 …………………………………………………………………………………Ⅴ Table of Contents …………………………………………………………………Ⅵ List of Figures ………………………………………………………………………Ⅹ Chapter 1 Dissertation Introduction ………………………………………………1 1.1 Introduction …………………………………………………………………1 1.2 Introduction on Copper Nanomaterials ……………………………………2 1.3 Introduction on Cu2-xTe Nanomaterials ……………………………………6 1.4 Introduction on Lithium Ion Battery Anodes Using Nanomaterials ………8 1.5 Motivation …………………………………………………………………10 1.6 Reference …………………………………………………………………12 Chapter 2 Synthesis and Self-Assembly of Monodisperse Copper Nanocubes ………………………………………………………………15 2.1 Introduction ………………………………………………………………15 2.2 Experimental Section ……………………………………………………18 2.2.1 Chemicals …………………………………………………………18 2.2.2 Synthesis of Cu nanocubes ………………………………………19 2.2.3 Characterization ……………………………………………………19 2.2.4 Preparation of Cu nanocube superlattices and Cu nanocube films ………………………………………………………………20 2.3 Results and Discussion ……………………………………………………21 2.3.1 Characterization of Cu nanocubes …………………………………21 2.3.2 Self assembly of Cu nanocubes ……………………………………26 2.3.3 SAXS characterization of self-assembled Cu nanocubes …………30 2.3.4 Characterization of Cu nanocube films ……………………………33 2.4 Conclusions ………………………………………………………………36 2.5 References …………………………………………………………………37 Chapter 3 Growth Mechanism Study of Cu Nanowires via Self Seed-Mediated Method ……………………………………………………………………43 3.1 Introduction ………………………………………………………………43 3.2 Experimental Section ………………………………………………………46 3.2.1 Chemicals …………………………………………………………46 3.2.2 Synthesis of Cu nanowires ………………………………………46 3.2.3 Characterization ……………………………………………………46 3.3 Results and Discussion ……………………………………………………48 3.3.1 Characterization of Cu nanowires …………………………………48 3.3.2 Morphological evolution of Cu nanostructures ……………………51 3.3.3 Detailed structural information of Cu nanostructures ……………54 3.3.4 Growth mechanism of Cu nanowires ………………………………57 3.3.5 Electrical and SERS properties of Cu nanowires …………………58 3.4 Conclusions ………………………………………………………………61 3.5 References …………………………………………………………………62 Chapter 4 Shape Control of Cu2-xTe Nanocrystals with Tunable Near-Infrared Localized Surface Plasmon Resonance ………………………………67 4.1 Introduction ………………………………………………………………67 4.2 Experimental Section ……………………………………………………70 4.2.1 Chemicals …………………………………………………………70 4.2.2 Synthesis of Cu2-xTe nanocrystals …………………………………70 4.2.3 Synthesis of Cu2-xTe hollow nanocrystals …………………………71 4.2.4 Characterization ……………………………………………………71 4.2.5 Reduction process of Cu2-xTe nanocrystals and Cu2-xTe hollow nanocrystals ………………………………………………………72 4.2.6 Oxidation process of Cu2-xTe nanocrystals and Cu2-xTe hollow nanocrystals ………………………………………………………72 4.2.7 Calculation of the molar extinction coefficients …………………73 4.2.8 Determination of the optical band gap ……………………………74 4.3 Results and Discussion ……………………………………………………75 4.3.1 Characterization of Cu2-xTe nanocrystals …………………………75 4.3.2 Characterization of Cu2-xTe hollow nanocrystals …………………80 4.3.3 UV-vis-NIR absorption spectra and calculated extinction coefficients of Cu2-xTe NCs and Cu2-xTe HNCs …………………………………87 4.3.4 Hall effect measurements of Cu2-xTe nanocrystals …………………91 4.3.5 Reduction and oxidation of Cu2-xTe NCs and Cu2-xTe HNCs ………………………………………………………………91 4.3.6 Electrical analysis of Cu2-xTe nanocrystal films …………………97 4.4 Conclusions ………………………………………………………………98 4.5 References …………………………………………………………………98 Chapter 5 Free Standing Si (Ge) Nanowire/Cu Nanowire Fabric for Lithium Ion Battery Anodes …………………………………………………………104 5.1 Introduction ………………………………………………………………104 5.2 Experimental Section ……………………………………………………107 5.2.1 Chemicals …………………………………………………………107 5.2.2 Synthesis of Ge nanowires ………………………………………107 5.2.3 Alkanethiol reactions of Si and Ge nanowires ……………………108 5.2.4 Synthesis of Cu nanowires ………………………………………109 5.2.5 Fabrication of free standing nanowire fabric ……………………109 5.2.6 Characterization ……………………………………………………110 5.2.7 Electrochemical characterization …………………………………110 5.3 Results and Discussion ……………………………………………………111 5.3.1 Characterization of Si, Ge, and Cu nanowires ……………………111 5.3.2 Fabrication and characterization of Si (Ge) nanowire/Cu nanowire fabric ………………………………………………………………113 5.3.3 Cyclic voltammetry of Si (Ge) nanowire/Cu nanowire fabric ………………………………………………………………118 5.3.4 The effect of the annealing temperature on the electrochemical performance ………………………………………………………120 5.3.5 The effect of the fabric composition on the electrochemical performance ………………………………………………………124 5.4 Conclusions ………………………………………………………………129 5.5 References ………………………………………………………………130 Curriculum Vitae …………………………………………………………………136 Publication ………………………………………………………………………137

    1.6 References
    1. Donega, C. D.; Liljeroth, P.; Vanmaekelbergh, D., Physicochemical Evaluation of the Hot‐Injection Method, a Synthesis Route for Monodisperse Nanocrystals. Small 2005, 1 (12), 1152-1162.
    2. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?. Angew Chem Int Edit 2009, 48 (1), 60-103.
    3. Dixit, P.; Miao, J. M.; Preisser, R., Fabrication of High Aspect Ratio 35 μm Pitch Through-Wafer Copper Interconnects by Electroplating for 3-D Wafer Stacking Semiconductor Devices, Materials, and Processing. Electrochem Solid St 2006, 9 (10), G305-G308.
    4. Cason, J. P.; Miller, M. E.; Thompson, J. B.; Roberts, C. B., Solvent effects on copper nanoparticle growth behavior in AOT reverse micelle systems. J Phys Chem B 2001, 105 (12), 2297-2302.
    5. Tanori, J.; Pileni, M. P., Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 1997, 13 (4), 639-646.
    6. Mansour, B. A.; Farag, B. S.; Khodier, S. A., Transport properties and band structure of non-stoichiometric Cu2−xTe. Thin Solid Films 1994, 247 (1), 112-119.
    7. Zhou, J.; Wu, X.; Duda, A.; Teeter, G.; Demtsu, S. H., The formation of different phases of CuxTe and their effects on CdTe/CdS solar cells. Thin Solid Films 2007, 515 (18), 7364-7369.
    8. Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts Chem Res 2008, 41 (12), 1578-1586.
    9. Dorfs, D.; Hartling, T.; Miszta, K.; Bigall, N. C.; Kim, M. R.; Genovese, A.; Falqui, A.; Povia, M.; Manna, L., Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2–x Se Nanocrystals. J Am Chem Soc 2011, 133 (29), 11175-11180.
    10. Zhang, Y.; Qiao, Z. P.; Chen, X. M., Microwave-assisted elemental direct reaction route to nanocrystalline copper chalcogenides CuSe and Cu 2 Te. J Mater Chem 2002, 12 (9), 2747-2748.
    11. Bruce, P. G.; Scrosati, B.; Tarascon, H.-M., Nanomaterials for Rechargeable Lithium Batteries. Angew. Chem. Int. Ed. 2008, 47, 2930- 2946.
    12. Kim, H.; Seo, M.; Park, M.-H.; Cho, J., A Critical Size of Silicon Nano‐Anodes for Lithium Rechargeable Batteries. Angew. Chem. Int. Ed. 2010, 49, 2146-2149.
    13. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle. R. P., Carbon nanotubes for lithium ion batteries. Energy Environ. Sci., 2009, 2, 638-654.

    2.5 References
    1. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew Chem Int Edit 2009, 48 (1), 60-103.
    2. Tao, A. R.; Habas, S.; Yang, P. D., Shape control of colloidal metal nanocrystals. Small 2008, 4 (3), 310-325.
    3. Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. N., Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 2006, 110 (32), 15666-15675.
    4. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold nanorods: Electrochemical synthesis and optical properties. J Phys Chem B 1997, 101 (34), 6661-6664.
    5. Chiu, C. Y.; Chung, P. J.; Lao, K. U.; Liao, C. W.; Huang, M. H., Facet-Dependent Catalytic Activity of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra toward 4-Nitroaniline Reduction. J Phys Chem C 2012, 116 (44), 23757-23763.
    6. McLellan, J. M.; Li, Z. Y.; Siekkinen, A. R.; Xia, Y. N., The SERS activity of a supported ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 2007, 7 (4), 1013-1017.
    7. Wiley, B. J.; Wang, Z. H.; Wei, J.; Yin, Y. D.; Cobden, D. H.; Xia, Y. N., Synthesis and electrical characterization of silver nanobeams. Nano Lett 2006, 6 (10), 2273-2278.
    8. Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N., Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons (vol 4, pg 1734, 2004). Nano Lett 2004, 4 (10), 2057-2057.
    9. Wiley, B.; Sun, Y. G.; Xia, Y. N., Polyol synthesis of silver nanostructures: Control of product morphology with Fe(II) or Fe(III) species. Langmuir 2005, 21 (18), 8077-8080.
    10. Jin, R. C.; Cao, Y. C.; Hao, E. C.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A., Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425 (6957), 487-490.
    11. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298 (5601), 2176-2179.
    12. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Edit 2006, 45 (21), 3414-3439.
    13. Dixit, P.; Miao, J. M.; Preisser, R., Fabrication of high-aspect-ratio 35 mu m pitch through-wafer copper interconnects by electroplating for 3D wafer stacking (vol 9, pg G305, 2006). Electrochem Solid St 2006, 9 (12), L16-L16.
    14. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S., Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J Am Chem Soc 2007, 129 (22), 6974-+.
    15. Jin, M. S.; He, G. N.; Zhang, H.; Zeng, J.; Xie, Z. X.; Xia, Y. N., Shape-Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angew Chem Int Edit 2011, 50 (45), 10560-10564.
    16. Guo, H. Z.; Chen, Y. Z.; Ping, H. M.; Jin, J. R.; Peng, D. L., Facile synthesis of Cu and Cu@Cu-Ni nanocubes and nanowires in hydrophobic solution in the presence of nickel and chloride ions. Nanoscale 2013, 5 (6), 2394-2402.
    17. Fan, H. Y.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H. F.; Lopez, G. P.; Brinker, C. J., Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 2004, 304 (5670), 567-571.
    18. Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H., Colloidal synthesis and self-assembly of COPt3 nanocrystals (vol 124, pg 11480, 2002). J Am Chem Soc 2002, 124 (46), 13958-13958.
    19. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000, 30, 545-610.
    20. Redl, F. X.; Cho, K. S.; Murray, C. B.; O'Brien, S., Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 2003, 423 (6943), 968-971.
    21. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B., Structural diversity in binary nanoparticle superlattices. Nature 2006, 439 (7072), 55-59.
    22. Demortiere, A.; Launois, P.; Goubet, N.; Albouy, P. A.; Petit, C., Shape-Controlled Platinum Nanocubes and Their Assembly into Two-Dimensional and Three-Dimensional Superlattices. J Phys Chem B 2008, 112 (46), 14583-14592.
    23. Zhang, J.; Kumbhar, A.; He, J. B.; Das, N. C.; Yang, K. K.; Wang, J. Q.; Wang, H.; Stokes, K. L.; Fang, J. Y., Simple Cubic Super Crystals Containing PbTe Nanocubes and Their Core-Shell Building Blocks. J Am Chem Soc 2008, 130 (45), 15203-15209.
    24. Chen, M.; Kim, J.; Liu, J. P.; Fan, H. Y.; Sun, S. H., Synthesis of FePt nanocubes and their oriented self-assembly. J Am Chem Soc 2006, 128 (22), 7132-7133.
    25. Quan, Z. W.; Fang, J. Y., Superlattices with non-spherical building blocks. Nano Today 2010, 5 (5), 390-411.
    26. Rycenga, M.; McLellan, J. M.; Xia, Y. N., Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv Mater 2008, 20 (12), 2416-+.
    27. Kamat, P. V., Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J Phys Chem C 2008, 112 (48), 18737-18753.
    28. Granot, E.; Patolsky, F.; Willner, I., Electrochemical assembly of a CdS semiconductor nanoparticle monolayer on surfaces: Structural properties and photoelectrochemical applications. J Phys Chem B 2004, 108 (19), 5875-5881.
    29. Pileni, M. P., Self-assemblies of nanocrystals: fabrication and collective properties. Appl Surf Sci 2001, 171 (1-2), 1-14.
    30. Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O'Brien, S., Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J Am Chem Soc 2006, 128 (11), 3620-3637.
    31. Wang, Z. L., Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 2000, 104 (6), 1153-1175.
    32. Zhang, Y. G.; Lu, F.; van der Lelie, D.; Gang, O., Continuous Phase Transformation in Nanocube Assemblies. Phys Rev Lett 2011, 107 (13).
    33. Eggiman, B. W.; Tate, M. P.; Hillhouse, H. W., Rhombohedral structure of highly ordered and oriented self-assembled nanoporous silica thin films. Chem Mater 2006, 18 (3), 723-730.
    34. Kikegawa, T.; Iwasaki, H., Pressure-Induced Rhombohedral-Simple Cubic Structural Phase-Transition in Arsenic. J Phys Soc Jpn 1987, 56 (10), 3417-3420.
    35. Yamamuro, S.; Sumiyama, K., Why do cubic nanoparticles favor a square array? Mechanism of shape-dependent arrangement in nanocube self-assemblies. Chem Phys Lett 2006, 418 (1-3), 166-169.
    36. Jiao, Y.; Stillinger, F. H.; Torquato, S., Optimal packings of superballs. Phys Rev E 2009, 79 (4).
    37. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., J Phys Chem B 2003, 107 (3), 668-677.
    38. Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S., Nano Lett 2003, 3 (8), 1087-1090.
    39. Musick, M. D.; Keating, C. D.; Lyon, L. A.; Botsko, S. L.; Pena, D. J.; Holliway, W. D.; McEvoy, T. M.; Richardson, J. N.; Natan, M. J., Chem Mater 2000, 12 (10), 2869-2881.
    40. Long, Y.; Chen, Z. J.; Wang, N. L.; Ma, Y. J.; Zhang, Z.; Zhang, L. J.; Wan, M. X., Electrical conductivity of a single conducting polyaniline nanotube. Appl Phys Lett 2003, 83 (9), 1863-1865.

    3.5 References
    1. Yong, C.; Zhang, B. C.; Seet, C. S.; See, A.; Chan, L.; Sudijono, J.; Liew, S. L.; Tung, C. H.; Zeng, H. C., Cool copper template for the formation of oriented nanocrystalline alpha-tantalum. J Phys Chem B 2002, 106 (48), 12366-12368.
    2. Monson, C. F.; Woolley, A. T., DNA-templated construction of copper nanowires. Nano Lett 2003, 3 (3), 359-363.
    3. Wen, X. G.; Xie, Y. T.; Choi, C. L.; Wan, K. C.; Li, X. Y.; Yang, S. H., Copper-based nanowire materials: Templated syntheses, characterizations, and applications. Langmuir 2005, 21 (10), 4729-4737.
    4. Pang, Y. T.; Meng, G. W.; Zhang, Y.; Fang, Q.; Zhang, L. D., Copper nanowire arrays for infrared polarizer. Appl Phys a-Mater 2003, 76 (4), 533-536.
    5. Rathmell, A. R.; Bergin, S. M.; Hua, Y. L.; Li, Z. Y.; Wiley, B. J., The Growth Mechanism of Copper Nanowires and Their Properties in Flexible, Transparent Conducting Films. Adv Mater 2010, 22 (32), 3558-+.
    6. Liu, Z. P.; Yang, Y.; Liang, J. B.; Hu, Z. K.; Li, S.; Peng, S.; Qian, Y. T., Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. J Phys Chem B 2003, 107 (46), 12658-12661.
    7. Chang, Y.; Lye, M. L.; Zeng, H. C., Large-scale synthesis of high-quality ultralong copper nanowires. Langmuir 2005, 21 (9), 3746-3748.
    8. Shi, Y.; Li, H.; Chen, L. Q.; Huang, X. J., Obtaining ultra-long copper nanowires via a hydrothermal process. Sci Technol Adv Mat 2005, 6 (7), 761-765.
    9. Ye, E. Y.; Zhang, S. Y.; Liu, S. H.; Han, M. Y., Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chem-Eur J 2011, 17 (11), 3074-3077.
    10. Cho, Y. S.; Huh, Y. D., Synthesis of ultralong copper nanowires by reduction of copper-amine complexes. Mater Lett 2009, 63 (2), 227-229.
    11. Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew Chem Int Edit 2009, 48 (1), 60-103.
    12. Wang, J. H.; Yang, T. H.; Wu, W. W.; Chen, L. J.; Chen, C. H.; Chu, C. J., Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics. Nanotechnology 2006, 17 (3), 719-722.
    13. Nepijko, S. A.; Ievlev, D. N.; Schulze, W.; Urban, J.; Ertl, G., Growth of rodlike silver nanoparticles by vapor deposition of small clusters. Chemphyschem 2000, 1 (3), 140-+.
    14. Bogels, G.; Meekes, H.; Bennema, P.; Bollen, D., Growth mechanism of vapor-grown silver crystals: Relation between twin formation and morphology. J Phys Chem B 1999, 103 (36), 7577-7583.
    15. Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N., Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett 2003, 3 (7), 955-960.
    16. Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 2002, 14 (11), 4736-4745.
    17. Murphy, C. J.; Jana, N. R., Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 2002, 14 (1), 80-82.
    18. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 2001, (7), 617-618.
    19. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 2001, 105 (19), 4065-4067.
    20. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S., Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mater Chem 2002, 12 (6), 1765-1770.
    21. Gole, A.; Murphy, C. J., Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem Mater 2004, 16 (19), 3633-3640.
    22. Chen, H. Y.; Gao, Y.; Zhang, H. R.; Liu, L. B.; Yu, H. C.; Tian, H. F.; Xie, S. S.; Li, J. Q., Transmission-electron-microscopy study on fivefold twinned silver nanorods. J Phys Chem B 2004, 108 (32), 12038-12043.
    23. Wiley, B.; Sun, Y. G.; Mayers, B.; Xia, Y. N., Shape-controlled synthesis of metal nanostructures: The case of silver. Chem-Eur J 2005, 11 (2), 454-463.
    24. Hutter, E.; Fendler, J. H., Exploitation of localized surface plasmon resonance. Adv Mater 2004, 16 (19), 1685-1706.
    25. Ni, C. Y.; Hassan, P. A.; Kaler, E. W., Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir 2005, 21 (8), 3334-3337.
    26. Lisiecki, I.; Filankembo, A.; Sack-Kongehl, H.; Weiss, K.; Pileni, M. P.; Urban, J., Structural investigations of copper nanorods by high-resolution TEM. Phys Rev B 2000, 61 (7), 4968-4974.
    27. Kim, C.; Gu, W. H.; Briceno, M.; Robertson, I. M.; Choi, H.; Kim, K., Copper nanowires with a five-twinned structure grown by chemical vapor deposition. Adv Mater 2008, 20 (10), 1859-+.
    28. Reyes-Gasga, J.; Elechiguerra, J. L.; Liu, C.; Camacho-Bragado, A.; Montejano-Carrizales, J. M.; Yacaman, M. J., On the structure of nanorods and nanowires with pentagonal cross-sections. J Cryst Growth 2006, 286 (1), 162-172.
    29. Elechiguerra, J. L.; Reyes-Gasga, J.; Yacaman, M. J., The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mater Chem 2006, 16 (40), 3906-3919.
    30. Ming, N. B.; Sunagawa, I., Twin Lamellae as Possible Self-Perpetuating Step Sources. J Cryst Growth 1988, 87 (1), 13-17.

    4.5 References
    1. Golab, J. T.; Sprague, J. R.; Carron, K. T.; Schatz, G. C.; Vanduyne, R. P., A surface enhanced hyper‐Raman scattering study of pyridine adsorbed onto silver: Experiment and theory. J Chem Phys 1988, 88 (12), 7942-7951.
    2. Endo, T.; Yamamura, S.; Nagatani, N.; Morita, Y.; Takamura, Y.; Tamiya, E., Label-Free Detection of Peptide Nucleic Acid−DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor. Sci Technol Adv Mat 2005, 6 (5), 491-500.
    3. Srituravanich, W.; Fang, N.; Sun, C.; Luo, Q.; Zhang, X., Plasmonic nanolithography. Nano Lett 2004, 4 (6), 1085-1088.
    4. Loo, C.; Lowery, A.; Halas, N. J.; West, J.; Drezek, R., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005, 5 (4), 709-711.
    5. Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices. Nat Mater 2010, 9 (10), 865-865.
    6. Kanehara, M.; Koike, H.; Yoshinaga, T.; Teranishi, T., Indium Tin Oxide Nanoparticles with Compositionally Tunable Surface Plasmon Resonance Frequencies in the Near-IR Region. J Am Chem Soc 2009, 131 (49), 17736-17737.
    7. Scotognella, F.; Della Valle, G.; Kandada, A. R. S.; Dorfs, D.; Zavelani-Rossi, M.; Conforti, M.; Miszta, K.; Comin, A.; Korobcheyskaya, K.; Lanzani, G.; Manna, L.; Tassone, F., Plasmon Dynamics in Colloidal Cu2–xSe Nanocrystals. Nano Lett 2011, 11 (11), 4711-4717.
    8. Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P., Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater 2011, 10 (5), 361-366.
    9. Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A., Copper Selenide Nanocrystals for Photothermal Therapy. Nano Lett 2011, 11 (6), 2560-2566.
    10. Mansour, B. A.; Farag, B. S.; Khodier, S. A., Transport properties and band structure of non-stoichiometric Cu2−xTe. Thin Solid Films 1994, 247 (1), 112-119.
    11. Farag, B. S.; Khodier, S. A., Spectral dependence of the absorption coefficient of thin films of non-stoichiometric Cu2−xTe. Thin Solid Films 1991, 205 (1), 52-57.
    12. Loferski, J. J., Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion. J Appl Phys 1956, 27 (7), 777-784.
    13. Zhou, J.; Wu, X.; Duda, A.; Teeter, G.; Demtsu, S. H., The formation of different phases of CuxTe and their effects on CdTe/CdS solar cells. Thin Solid Films 2007, 515 (18), 7364-7369.
    14. Pashinkin, A. S.; Fedorov, V. A., Phase equilibria in the Cu–Te system. Inorg Mater+ 2003, 39 (6), 539-554.
    15. Da Silva, J. L. F.; Wei, S. H.; Zhou, J.; Wu, X. Z., Stability and electronic structures of Cu x Te. Appl Phys Lett 2007, 91 (9).
    16. Palchik, O.; Kerner, R.; Zhu, Z.; Gedanken, A., Preparation of Cu2−xTe and HgTe by Using Microwave Heating. J Solid State Chem 2000, 154 (2), 530-534.
    17. Fan, H. J.; Gosele, U.; Zacharias, M., Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. Small 2007, 3 (10), 1660-1671.
    18. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect. Science 2004, 304 (5671), 711-714.
    19. Aldinger, F., Controlled porosity by an extreme kirkendall effect. Acta Metall Mater 1974, 22 (7), 923-928.
    20. Fan, H. J.; Scholz, R.; Kolb, F. M.; Zacharias, M.; Gosele, U., Growth mechanism and characterization of zinc oxide microcages. Solid State Commun 2004, 130 (8), 517-521.
    21. Farag, B. S.; Khodier, S. A., Direct and indirect transitions in copper telluride thin films. Thin Solid Films 1991, 201 (2), 231-240.
    22. Goswami, A.; Rao, B. V., Optical Properties of Cu 2 Se and Cu 2 Te Films. Indian J Phys 1976, 50 (1), 50-59.
    23. Zhao, Y. X.; Burda, C., Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energ Environ Sci 2012, 5 (2), 5564-5576.
    24. Kriegel, I.; Jiang, C. Y.; Rodriguez-Fernandez, J.; Schaller, R. D.; Talapin, D. V.; da Como, E.; Feldmann, J., Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals. J Am Chem Soc 2012, 134 (3), 1583-1590.
    25. Gao, F. F.; Cheng, Y. M.; Yu, Q. J.; Liu, S.; Shi, D.; Li, Y. H.; Wang, P., Conjugation of Selenophene with Bipyridine for a High Molar Extinction Coefficient Sensitizer in Dye-Sensitized Solar Cells. Inorg Chem 2009, 48 (6), 2664-2669.
    26. Cademartiri, L.; Montanari, E.; Calestani, G.; Migliori, A.; Guagliardi, A.; Ozin, G. A., Size-dependent extinction coefficients of PbS quantum dots. J Am Chem Soc 2006, 128 (31), 10337-10346.
    27. Dai, Q. Q.; Wang, Y. N.; Li, X. B.; Zhang, Y.; Pellegrino, D. J.; Zhao, M. X.; Zou, B.; Seo, J.; Wang, Y. D.; Yu, W. W., Size-Dependent Composition and Molar Extinction Coefficient of PbSe Semiconductor Nanocrysta. Acs Nano 2009, 3 (6), 1518-1524.
    28. Liu, X. O.; Atwater, M.; Wang, J. H.; Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloid Surface B 2007, 58 (1), 3-7.
    29. Liao, H. W.; Hafner, J. H., Gold Nanorod Bioconjugates. Chem Mater 2005, 17 (18), 4636-4641.
    30. Kam, N. W. S.; O'Connell, M.; Wisdom, J. A.; Dai, H. J., Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. P Natl Acad Sci USA 2005, 102 (33), 11600-11605.
    31. Zhao, Y. X.; Pan, H. C.; Lou, Y. B.; Qiu, X. F.; Zhu, J. J.; Burda, C., Plasmonic Cu2−xS Nanocrystals: Optical and Structural Properties of Copper-Deficient Copper(I) Sulfides. J Am Chem Soc 2009, 131 (12), 4253-4261.
    32. Hmurcik, L.; Allen, L.; Serway, R. A., The effects of heat treatments on the transport properties of CuxS thin films. J Appl Phys 1982, 53 (12), 9063-9072.
    33. Riha, S. C.; Johnson, D. C.; Prieto, A. L., Cu2Se Nanoparticles with Tunable Electronic Properties Due to a Controlled Solid-State Phase Transition Driven by Copper Oxidation and Cationic Conduction. J Am Chem Soc 2011, 133 (5), 1383-1390.
    34. Miyatani, S. Y.; Mori, S.; Yanagihara, M., Phase Diagram and Electrical Properties of Cu2-δTe. J Phys Soc Jpn 1979, 47 (4), 1152-1158.
    35. Miller, M. M.; Lazarides, A. A., Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B 2005, 109 (46), 21556-21565.

    5.5 References
    1. Bruce, P. G.; Scrosati, B.; Tarascon, J. M., Nanomaterials for rechargeable lithium batteries. Angew Chem Int Edit 2008, 47 (16), 2930-2946.
    2. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. J Mater Chem 2011, 21 (27), 9938-9954.
    3. Ji, G.; Ma, Y.; Lee, J. Y., Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials. J Mater Chem 2011, 21 (27), 9819-9824.
    4. Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J., Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Adv Energy Mater 2014, 4 (1).
    5. McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y., 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv Mater 2013, 25 (36), 4966-4984.
    6. Zhang, W. J., A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 2011, 196 (1), 13-24.
    7. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Adv Mater 2011, 23 (15), 1695-1715.
    8. Lee, K. T.; Cho, J., Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6 (1), 28-41.
    9. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008, 3 (1), 31-35.
    10. Kim, H.; Seo, M.; Park, M. H.; Cho, J., A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries. Angew Chem Int Edit 2010, 49 (12), 2146-2149.
    11. Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M. L.; Cho, J., Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries. Angew Chem Int Edit 2011, 50 (41), 9647-9650.
    12. Park, M. H.; Kim, K.; Kim, J.; Cho, J., Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Adv Mater 2010, 22 (3), 415-+.
    13. Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Silicon Nanotube Battery Anodes. Nano Lett 2009, 9 (11), 3844-3847.
    14. Tan, L. P.; Lu, Z. Y.; Tan, H. T.; Zhu, J. X.; Rui, X. H.; Yan, Q. Y.; Hng, H. H., Germanium nanowires-based carbon composite as anodes for lithium-ion batteries. J Power Sources 2012, 206, 253-258.
    15. Chan, C. K.; Zhang, X. F.; Cui, Y., High capacity Li ion battery anodes using Ge nanowires. Nano Lett 2008, 8 (1), 307-309.
    16. Chew, S. Y.; Ng, S. H.; Wang, J. Z.; Novak, P.; Krumeich, F.; Chou, S. L.; Chen, J.; Liu, H. K., Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 2009, 47 (13), 2976-2983.
    17. Wang, C. Y.; Li, D.; Too, C. O.; Wallace, G. G., Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chem Mater 2009, 21 (13), 2604-2606.
    18. Chou, S. L.; Zhao, Y.; Wang, J. Z.; Chen, Z. X.; Liu, H. K.; Dou, S. X., Silicon/Single-Walled Carbon Nanotube Composite Paper as a Flexible Anode Material for Lithium Ion Batteries. J Phys Chem C 2010, 114 (37), 15862-15867.
    19. Yuan, F. W.; Tuan, H. Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chem Mater 2014, 26 (6), 2172-2179.
    20. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A., Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material. J Am Chem Soc 2011, 133 (51), 20914-20921.
    21. Yuan, F. W.; Yang, H. J.; Tuan, H. Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. Acs Nano 2012, 6 (11), 9932-9942.
    22. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-Derivatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System. J Chem Soc Chem Comm 1994, (7), 801-802.
    23. Yang, H. J.; He, S. Y.; Tuan, H. Y., Self-Seeded Growth of Five-Fold Twinned Copper Nanowires: Mechanistic Study, Characterization and SERS Applications. Langmuir 2014, 30 (2), 602-610.
    24. Liu, B. R.; Soares, P.; Checkles, C.; Zhao, Y.; Yu, G. H., Three-Dimensional Hierarchical Ternary Nanostructures for High-Performance Li-Ion Battery Anodes. Nano Lett 2013, 13 (7), 3414-3419.
    25. Three-Dimensional Hierarchical Ternary Nanostructures for HighKong, J. H.; Yee, W. A.; Wei, Y. F.; Yang, L. P.; Ang, J. M.; Phua, S. L.; Wong, S. Y.; Zhou, R.; Dong, Y. L.; Li, X.; Lu, X. H., Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 2013, 5 (7), 2967-2973.
    26. Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R., Cu-Ge core-shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J Mater Chem 2012, 22 (4), 1511-1515.
    27. Zhong, C.; Wang, J. Z.; Gao, X. W.; Wexler, D.; Liu, H. K., In situ one-step synthesis of a 3D nanostructured germanium-graphene composite and its application in lithium-ion batteries. J Mater Chem A 2013, 1 (36), 10798-10804.
    28. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. Acs Appl Mater Inter 2012, 4 (9), 4658-4664.
    29. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes. Langmuir 2012, 28 (1), 965-976.
    30. Chae, O. B.; Park, S.; Ku, J. H.; Ryu, J. H.; Oh, S. M., Nano-scale uniform distribution of Ge/Cu3Ge phase and its electrochemical performance for lithium-ion batteries. Electrochim Acta 2010, 55 (8), 2894-2900.
    31. Chen, H. X.; Xiao, Y.; Wang, L.; Yang, Y., Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J Power Sources 2011, 196 (16), 6657-6662.
    32. He, Y.; Wang, Y. H.; Yu, X. Q.; Li, H.; Huang, X. J., Si-Cu Thin Film Electrode with Kirkendall Voids Structure for Lithium-Ion Batteries. J Electrochem Soc 2012, 159 (12), A2076-A2081.
    33. Kim, J. H.; Kim, H.; Sohn, H. J., Addition of Cu for carbon coated Si-based composites as anode materials for lithium-ion batteries. Electrochem Commun 2005, 7 (5), 557-561.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE