研究生: |
黃喬緯 Huang, Chiao Wei |
---|---|
論文名稱: |
以正規方法運用於臨界值邏輯電路之優化的研究 A Formal Approach to the Threshold Logic Network Optimization |
指導教授: |
王俊堯
Wang, Chun Yao |
口試委員: |
林榮彬
黃俊達 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 臨界值邏輯電路 、優化 |
外文關鍵詞: | network decomposition, SAT-based optimization |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個複雜的布林函數只需要一個臨界值邏輯閘即可表示,這是臨界值邏輯閘重要的特性。
近年來,許多研究著重在如何將布林函數合成為臨界值邏輯電路。
在此篇論文中,我們提出以正規方法運用於臨界值邏輯電路之優化的研究。
我們的方法由分解邏輯電路(network decomposition)及可滿足性為基礎的最佳化方法(SAT-based optimization)所組成。
在此篇論文中,我們也提出更實際的成本函數計算-以臨界值邏輯電路中的臨界值邏輯閘的個數、權重以及臨界值的總和為計算依據。
我們以IWLS 2005的效能評估程式來進行實驗。
實驗結果顯示我們提出的演算法可以平均減少將近6%的成本。
Threshold logic has a property that it can represent a complex Boolean function with one threshold logic gate.
Recently, many works have focused on the synthesis of threshold logic networks from the Boolean functions.
In this paper, we propose a formal approach to the threshold logic network optimization.
The proposed approach consists of network decomposition and SAT-based optimization based on a more practical cost function -- the summation of gate counts, weights, and threshold values in the whole threshold network.
We conducted the experiments on a set of IWLS 2005 benchmarks.
The experimental results show that the proposed algorithm can effectively reduce the cost by nearly 6% for the benchmarks on average.
[1] M. J. Avedillo et al., \Multi-Threshold Threshold Logic Circuit Design using Resonant Tun-
nelling Devices," Electron. Lett., 2003, pp. 1502-1504, vol. 39.
[2] V. Beiu et al., \VLSI Implementations of Threshold Logic-A Comprehensive Survey," IEEE
Transactions on Neural Networks, 2003, pp. 1217-1243, vol. 14.
[3] Y.-C. Chen et al., \Automated Mapping for Recongurable Single-Electron Transistor ar-
rays," Proc. DAC, 2011, pp. 878-883.
[4] Y.-C. Chen et al., \A Synthesis Algorithm for Recongurable Single-Electron Transistor
Arrays," ACM Journal on Emerging Technologies in Computing System, 2013, p. Article 5,
vol. 9.
[5] C.-E. Chiang et al., \On Recongurable Single-Electron Transistor Arrays Synthesis using
Reordering Techniques," Proc. DATE, 2013, pp. 1807-1812.
[6] F. Deliang et al., \Design and Synthesis of Ultralow Energy Spin-Memristor Threshold Logic,"
IEEE Trans. Nanotechnology, 2014, 13(3):574-83.
[7] S. Eachempati et al., \Recongurable Bdd-based Quantum Circuits," Proc. Int. Symp. on
Nanoscale Architectures, 2008, pp. 61-67.
[8] P. Gupta et al., \Automatic Test Generation for Combinational Threshold Logic Networks,"
IEEE Trans. CAD, 2008, pp. 1035-1045, vol. 16.
[9] T. Gowda et al., \Identication of Threshold Functions and Synthesis of Threshold Net-
works," IEEE Trans. CAD, 2011, pp. 665-677, vol. 30.
[10] T. Gowda et al., \A Non-ILP Based Threshold Logic Synthesis Methodology," Proc. Inter-
national Workshop on Logic and Synthesis, 2007, pp. 222-229.
[11] T. Gowda et al., \Decomposition Based Approach for Synthesis of Multi-Level Threshold
Logic Circuits," Proc. Asia and South Pacic Design Automation Conf., 2008, pp. 125-130.
[12] T. Gowda et al., \Combinational Equivalence Checking for Threshold Logic Circuits," Proc.
Great Lake Symp. VLSI, 2007, pp. 102-107.
[13] D. Hampel et al., \Threshold logic," IEEE Spectrum, 1971, pp. 32-39, vol. 8.
[14] S. L. Hurst, \Sequential Circuits using Threshold Logic Gates," Int. Journal of Electronics,
1970, pp. 495-499, vol. 29.
[15] P.-Y. Kuo et al., \On Rewiring and Simplication for Canonicity in Threshold Logic Circuits,"
Proc. ICCAD, 2011, pp. 396-403.
[16] C. Lageweg et al., \A Linear Threshold Gate Implementation in Single Electron Technology,"
Proc. Comput. Soc. Workshop VLSI, 2001, pp. 93-98.
[17] C.-C. Lin et al., \Rewiring for Threshold Logic Circuit Minimization," Proc. DATE, 2014,
pp. 1-6.
[18] S. Muroga, \Threshold Logic and its Applications," 1971, New York, NY: John Wiley.
[19] C. Pacha et al., \Resonant Tunneling Device Logic Circuit," 1999, DortmundGerhard-
Mercator University of Duisburg, Germany, Tech. Rep.
[20] M. Perkowski et al., \Logic Synthesis for Regular Fabric Realized in Quantum dot Cellular
Automata," Journal of Multiple-Valued Logic and Soft Comput., 2004, pp. 768-773.
[21] V. Saripalli et al., \Energy-delay Performance of Nanoscale Transistors Exhibiting Single
Electron Behavior and Associated Logic Circuits," Journal of Low Power Electronics, 2010,
pp. 415-428,vol. 6.
[22] C.-K. Tsai et al., \Sensitization Criterion for Threshold Logic Circuits and its Application,"
Proc. ICCAD, 2013, pp. 226-233.
[23] P. Venkataramani et al., \Sequential Circuit Design in Quantumdot Cellular Automata,"
Proc. Nanotechnology Conf., 2008, pp. 534-537.
[24] R. O. Winder, \Single Stage Threshold Logic," Switching Circuit Theory and Logical Design,
1961, pp. 321-332.
[25] R. O. Winder, \Threshold Logic," 1962, Ph.D. dissertation, Princeton University, Princeton,
NJ.
[26] R. O. Winder, \Enumeration of Seven-Argument Threshold Functions," IEEE Trans. on
Electronic Computers, 1965, pp. 315-325.
[27] R. Zhang et al., \Threshold Network Synthesis and Optimization and its Application to Nan-
otechnologies," IEEE Trans. Comput-Aided Design Integr. Circuits Syst., 2005, 24(1):107-18.
[28] Y. Zheng et al., \SAT-based Equivalence Checking of Threshold Logic Designs for Nanotech-
nologies," Proc. Great Lake Symp. VLSI, 2008, pp. 225-230.
[29] http://iwls.org/iwls2005/benchmarks.html