簡易檢索 / 詳目顯示

研究生: 黃喬緯
Huang, Chiao Wei
論文名稱: 以正規方法運用於臨界值邏輯電路之優化的研究
A Formal Approach to the Threshold Logic Network Optimization
指導教授: 王俊堯
Wang, Chun Yao
口試委員: 林榮彬
黃俊達
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 26
中文關鍵詞: 臨界值邏輯電路優化
外文關鍵詞: network decomposition, SAT-based optimization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一個複雜的布林函數只需要一個臨界值邏輯閘即可表示,這是臨界值邏輯閘重要的特性。
    近年來,許多研究著重在如何將布林函數合成為臨界值邏輯電路。
    在此篇論文中,我們提出以正規方法運用於臨界值邏輯電路之優化的研究。
    我們的方法由分解邏輯電路(network decomposition)及可滿足性為基礎的最佳化方法(SAT-based optimization)所組成。
    在此篇論文中,我們也提出更實際的成本函數計算-以臨界值邏輯電路中的臨界值邏輯閘的個數、權重以及臨界值的總和為計算依據。
    我們以IWLS 2005的效能評估程式來進行實驗。
    實驗結果顯示我們提出的演算法可以平均減少將近6%的成本。


    Threshold logic has a property that it can represent a complex Boolean function with one threshold logic gate.
    Recently, many works have focused on the synthesis of threshold logic networks from the Boolean functions.
    In this paper, we propose a formal approach to the threshold logic network optimization.
    The proposed approach consists of network decomposition and SAT-based optimization based on a more practical cost function -- the summation of gate counts, weights, and threshold values in the whole threshold network.
    We conducted the experiments on a set of IWLS 2005 benchmarks.
    The experimental results show that the proposed algorithm can effectively reduce the cost by nearly 6% for the benchmarks on average.

    中文摘要i Abstract ii Acknowledgement iii Contents iv List of Tables vi List of Figures vii 1 Introduction 1 2 Preliminaries 5 2.1 Positive-negative Weight Transformation 5 2.2 Critical-E ect Vectors 5 2.3 Hyperplane and Half-space 6 3 Network Decomposition 8 4 SAT-based Optimization 11 4.1 An Example 11 4.2 Function Derivation from the CEVs 12 4.3 SAT-based Optimization 12 4.3.1 AND-phase 13 4.3.2 OR-phase 14 4.4 Weights and Threshold Values Update 15 4.4.1 AND-phase 15 4.4.2 OR-phase 16 5 Overall Algorithm 17 6 Experimental Results 19 7 Conclusion 23

    [1] M. J. Avedillo et al., \Multi-Threshold Threshold Logic Circuit Design using Resonant Tun-
    nelling Devices," Electron. Lett., 2003, pp. 1502-1504, vol. 39.
    [2] V. Beiu et al., \VLSI Implementations of Threshold Logic-A Comprehensive Survey," IEEE
    Transactions on Neural Networks, 2003, pp. 1217-1243, vol. 14.
    [3] Y.-C. Chen et al., \Automated Mapping for Recon gurable Single-Electron Transistor ar-
    rays," Proc. DAC, 2011, pp. 878-883.
    [4] Y.-C. Chen et al., \A Synthesis Algorithm for Recon gurable Single-Electron Transistor
    Arrays," ACM Journal on Emerging Technologies in Computing System, 2013, p. Article 5,
    vol. 9.
    [5] C.-E. Chiang et al., \On Recon gurable Single-Electron Transistor Arrays Synthesis using
    Reordering Techniques," Proc. DATE, 2013, pp. 1807-1812.
    [6] F. Deliang et al., \Design and Synthesis of Ultralow Energy Spin-Memristor Threshold Logic,"
    IEEE Trans. Nanotechnology, 2014, 13(3):574-83.
    [7] S. Eachempati et al., \Recon gurable Bdd-based Quantum Circuits," Proc. Int. Symp. on
    Nanoscale Architectures, 2008, pp. 61-67.
    [8] P. Gupta et al., \Automatic Test Generation for Combinational Threshold Logic Networks,"
    IEEE Trans. CAD, 2008, pp. 1035-1045, vol. 16.
    [9] T. Gowda et al., \Identi cation of Threshold Functions and Synthesis of Threshold Net-
    works," IEEE Trans. CAD, 2011, pp. 665-677, vol. 30.
    [10] T. Gowda et al., \A Non-ILP Based Threshold Logic Synthesis Methodology," Proc. Inter-
    national Workshop on Logic and Synthesis, 2007, pp. 222-229.
    [11] T. Gowda et al., \Decomposition Based Approach for Synthesis of Multi-Level Threshold
    Logic Circuits," Proc. Asia and South Paci c Design Automation Conf., 2008, pp. 125-130.
    [12] T. Gowda et al., \Combinational Equivalence Checking for Threshold Logic Circuits," Proc.
    Great Lake Symp. VLSI, 2007, pp. 102-107.
    [13] D. Hampel et al., \Threshold logic," IEEE Spectrum, 1971, pp. 32-39, vol. 8.
    [14] S. L. Hurst, \Sequential Circuits using Threshold Logic Gates," Int. Journal of Electronics,
    1970, pp. 495-499, vol. 29.
    [15] P.-Y. Kuo et al., \On Rewiring and Simpli cation for Canonicity in Threshold Logic Circuits,"
    Proc. ICCAD, 2011, pp. 396-403.
    [16] C. Lageweg et al., \A Linear Threshold Gate Implementation in Single Electron Technology,"
    Proc. Comput. Soc. Workshop VLSI, 2001, pp. 93-98.
    [17] C.-C. Lin et al., \Rewiring for Threshold Logic Circuit Minimization," Proc. DATE, 2014,
    pp. 1-6.
    [18] S. Muroga, \Threshold Logic and its Applications," 1971, New York, NY: John Wiley.
    [19] C. Pacha et al., \Resonant Tunneling Device Logic Circuit," 1999, DortmundGerhard-
    Mercator University of Duisburg, Germany, Tech. Rep.
    [20] M. Perkowski et al., \Logic Synthesis for Regular Fabric Realized in Quantum dot Cellular
    Automata," Journal of Multiple-Valued Logic and Soft Comput., 2004, pp. 768-773.
    [21] V. Saripalli et al., \Energy-delay Performance of Nanoscale Transistors Exhibiting Single
    Electron Behavior and Associated Logic Circuits," Journal of Low Power Electronics, 2010,
    pp. 415-428,vol. 6.
    [22] C.-K. Tsai et al., \Sensitization Criterion for Threshold Logic Circuits and its Application,"
    Proc. ICCAD, 2013, pp. 226-233.
    [23] P. Venkataramani et al., \Sequential Circuit Design in Quantumdot Cellular Automata,"
    Proc. Nanotechnology Conf., 2008, pp. 534-537.
    [24] R. O. Winder, \Single Stage Threshold Logic," Switching Circuit Theory and Logical Design,
    1961, pp. 321-332.
    [25] R. O. Winder, \Threshold Logic," 1962, Ph.D. dissertation, Princeton University, Princeton,
    NJ.
    [26] R. O. Winder, \Enumeration of Seven-Argument Threshold Functions," IEEE Trans. on
    Electronic Computers, 1965, pp. 315-325.
    [27] R. Zhang et al., \Threshold Network Synthesis and Optimization and its Application to Nan-
    otechnologies," IEEE Trans. Comput-Aided Design Integr. Circuits Syst., 2005, 24(1):107-18.
    [28] Y. Zheng et al., \SAT-based Equivalence Checking of Threshold Logic Designs for Nanotech-
    nologies," Proc. Great Lake Symp. VLSI, 2008, pp. 225-230.
    [29] http://iwls.org/iwls2005/benchmarks.html

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE