研究生: |
王凱生 |
---|---|
論文名稱: |
訂單滿足流程與可允諾量分配模式-以TFT-LCD產業為例 Order Fulfillment Process and Available-to-Promise (ATP) model for TFT-LCD Industry |
指導教授: | 林則孟 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 可允諾量 、TFT-LCD 、等級轉換 |
外文關鍵詞: | Available-to-promise (ATP), TFT-LCD industry, grade transformation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TFT-LCD產業由於生產前置時間冗長,製程繁瑣複雜,分為列陣(Array)、組立(Cell)與模組(Module)三製程段且分別在不同廠區進行生產,再加上玻璃基板世代數的不斷提升造成廠區的日益擴增,使得整個TFT-LCD產業形成一條錯綜複雜的生產鏈。由於顧客對於最終的面板會指定用料與指定等級,所以該生產鏈後段的模組製程採取接單後生產(Make-to-Stock, MTO),接到顧客訂單之後再透過運輸從組立廠內拉進半成品面板進行物料的組裝,以完成TFT-LCD面板。
TFT-LCD面板由於製程品質的影響,在完成組立製程後便產生了等級上的區分,緊接著在模組製程與不同的物料進行搭配,可能會發生升等或者降等級的等級轉換現象;然顧客下單是指定最終產品的物料組合與成品等級,使得計算顧客訂單的允諾量時,無法以傳統MRP邏輯進行物料的展開與試算,經常發生訂單允諾後卻無法達交,或者為了滿足已經承諾的訂單而產生大量的成品庫存。
因此本研究提出訂單允諾結合模組廠多廠區生產規劃的訂單滿足流程,發展一數學規劃模式,同步考量可允諾量計算與模組生產計畫,直接以顧客的詢問性訂單進行模組廠多廠區的生產試規劃,讓生產規劃與允諾量可以同步計算,產生可行的生產計畫與各詢問性訂單的滿足狀況,並以規劃結果回覆顧客可以允交的產品數量。此外,本研究提出之模式對於已經允諾的允諾量採可以重新分配(Re-allocation)的方式,將有助於企業將資源做更有效率的利用。
最後,設計兩種不同物料供給情境,在不同的訂單收集區間內,比較「可允許已允諾量重新分配」與「不允許已允諾量重新分配」的不同可允諾量計算方式的實驗分析,實驗結果證明可允許已允諾量重新分配的計算方式在各項績效指標上的表現上均較佳,證明的確可以將資源做更有效的利用,但程式執行時間卻高出許多,在資料量很大的狀況下,可能造成求解時間過長的困擾。
Due to technology changes, the demands in the consumer electronics industry keep expanding, particularly in the Thin Film Transistor Liquid Crystal Display (TFT-LCD) panel industry. A firm may own several parallel production lines in different areas, where lines can not completely backup each other due to different technology levels. The manufacturing processes of TFT-LCD can be divided into three stages Array, Cell and Module. The production in Array and Cell is triggered by pre-defined production schedule because of their complicated production steps and long production lead time. Module begins to assemble panel and other components according to actual orders (assembly-to-order, ATO). In addition, we consider the transportation between different production stages because Module factories are usually built in areas with lower labor cost.
The order fulfillment and available-to-promise (ATP) problems in TFT-LCD manufacturing are more complicated than other industries because of “alternative Bill of Material (BOM)” and “grade transformation” of final products. Alternative BOM means that one product may have several BOMs due to different raw materials from suppliers. Grade transformation causes the upgrade or downgrade of final products because of the alternative BOMs or different process capability.
In this paper, a mixed integer linear programming model is developed for order fulfillment and ATP problems. This model considers customized BOMs, grades, and other realistic constrains. We conclude this paper with sensitivity analysis and the performance impacts of different ATP rules.
1. 王世欽,“多廠區生產系統之訂單分配模式—以液晶顯示器產業為例”,私立東海大學工業工程學系,碩士論文,2002。
2. 何興華,“建構以配置可允諾量為基礎的訂單允諾流程”,台科大工管系,碩士論文,2005。
3. 李和璞,“考量替代路徑下,上下游多廠整合生產規劃問題之研究”,國立台灣科技大學工業管理系,碩士論文,2004。
4. 余家福,“考量產能限制下多廠區訂單分配問題之研究”,元智大學,碩士論文,2006。
5. 周哲維,“多廠區整體物料規劃”,私立元智大學工業工程與管理學系,碩士論文,2003。
6. 林進添,“有限產能與物料下之跨廠區多階製程訂單分配”,元智大學,碩士論文,2004。
7. 林慈傑,“以遺傳演算法求解類運輸問題模式化的多廠訂單分配問題”,國立台灣大學商學研究所,碩士論文,2002。
8. 陳亞男,“多廠生產規劃之供應鏈決策支援模式”,國立台灣大學商學研究所,碩士論文,2001。
9. 陳振益,“製造商之最佳化可允諾量分配模型”,國立台灣大學商學研究所,碩士論文,2002。
10. 黃彥彰,“TFT-LCD產業多廠區訂單規劃與排程”, 私立東海大學工業工程所,碩士論文,2003。
11. 黃黎毅,“製造業訂單管理系統之資訊流程與決策模式的建立”,私立東海大學工業工程所,碩士論文,1997。
12. 張文龍,“多廠區多階製程生產規劃─以TFT-LCD產業為例”,元智大學,碩士論文,2005。
13. 曾煥雯,“跨廠訂單分配模式之建構─應用模擬退火演算法”,元智大學,碩士論文,2000。
14. 劉基全,“多層上下游生產環境下多廠整合生產規劃問題之研究”,國立台灣大學商學研究所,碩士論文,2003。
15. 盧雲春,“IC設計公司之生產規劃系統”,國立清華大學工業工程與工程管理學系,碩士論文,1999。
16. American Production and Inventory Control Soceity. APICS Dictionary, 1998.
17. Ball, M.O., Chen, C.Y. and Zhao, Z.Y., “Available To Promise”, Working Paper, Rober H Smith School of Business University of Maryland College Park, 2002.
18. Balakrishnan, N., Wayne Patterson, j. and Sridharan, V., “Robustness of capacity rationing policies”, European Journal of Operational Research 115, 328-338, 1999.
19. BarbarOsoglu, G. and Yazgac, T., “A decision support model for customer value assessment and supply quota allocation”, production planning & control, Vol. 11, No. 6, 608-616, 2000
20. Bollapragada, S., Akella, R. and Srinivasan, R., “Centralized ordering and allocation policies in a two-echelon system with non-identical warehouse”, European Journal of Operational Research 106, 74-81, 1998.
21. Bruns, R. and Sauer, J., “Knowledge-Based Multi-Site Coordination and Scheduling”, Flexible Automation and Intelligent Manufacturing, pp.115-123, 1995.
22. Chen, C.Y., Zhao, Z.Y. and Ball, M.O., “Quantity and Due Date Quoting Available to Promise”, Information Systems Frontiers, 3:4, pp.477-488, 2001.
23. Chen, C.Y., Zhao, Z.Y. and Ball, M.O., “A model for batch advanced available to promise”, Production and Operations Management,11, pp.424 – 440, 2001.
24. Christian, H. T. and Kallrath J., “Optimal Planning in Large Multi-Site Production Networks”, European Journal of Operational Research, 126, pp.422-435, 2000.
25. Christopher M., 1998, “Logistics and Supply Chain Management,” Prentice Hall.Chen, C.Y., Zhao, Z.Y. and Ball, M.O., “A model for batch advanced available to promise”, Production and Operations Management,11, pp.424 – 440, 2000
26. Guerrero, H.H., “Demand management strategies for assemble-to-order production environment”, Int. J. Prod. Res., Vol 29, No. 1, 39-51, 1991.
27. Guinet, A., “Multi-Site Planning: A Transshipment Problem,” International Journal of Production Economics, 74, 21-32, 2001.
28. Hung, Y.F., and Wang, Q.Z., “A New Formulation Technique for Alternative Material Planning-An Approach for Semiconductor Bin Allocation Planning”, Computer & Industrial Engineering, Vol. 32, No. 2, pp.281-197 ,1997.
29. Jeong, B., Sim, S. B., Jeong, H. S., and Kim, S. W., “An Available-to-Promise System for TFT LCD Manufacturing in Supply Chain”, Computers &Industrial Engineering, Vol.43, pp.191-212, 2002.
30. Kilger, C., & L. Schneeweiss “Demand Fulfillment and ATP in: Supply Chain Management and Advanced Planning: Concepts, Models, Software and Case Studies”. Berlin, Germany: Springer, pp.135-148, 2000.
31. Kritchanchai, D. and MacCarthy, B.L., “Responsiveness of the order fulfillment process”, International Journal of Operation & Production Management, Vol. 19, No. 8, 812-833, 1999.
32. Korpela, J., Kylaheiko, K., Lehmusvaara, A., Tuominen, M., “An analytic approach to production capacity allocation and supply chain design”, Int. J. Production Economics 78, 187-195, 2002.
33. Leachman et al., “IMPReSS:An Automated Production-Planning and Delivery-Quotation System at Harris Corporation — Semiconductor Sector”, Institute for Operation Research and the Management Sciences,1996.
34. Leachman, R. C., “Preliminary Design and Development of a Corporate-Level Production Planning System for the Semiconductor Industry”, Operations Research Center University of California, Berkeley, 1987.
35. Leachman, R.C., “Modeling Techniques for Automated Production Planning in the Semiconductor Industry”, in Optimization in Industry. T. A. Cirianiand R. C. Leachman, John Wiley and Sons, Chichester, UK, pp.1-30, 1993.
36. Leachman, R.C., and Carmon, T., “On Capacity Modeling for Production Planning with Alternative Machine Types”, IIE Transactions, Vol. 24, No. 4, pp.62-72, 1992.
37. Lin, F.R. and Shaw, M.J., “Reengineering the Order Fulfillment Process in Supply Chain Networks”, International Journal of Flexible Manufacturing Systems, 10, 197-229, 1998.
38. Piroird, F. and Dale, B.G., “The importance of lead time control in the order fulfillment process”, Production Planning and Control, Vol. 9, No. 7, 640-649, 1998.
39. Roux, W., Dauzere-Peres, S., Lasserre, J. B., “Planning and scheduling in a multi-site environment”, Production Planning & Control, 10(1), pp.19-28, 1999.
40. Sauer, J., Suelmann, G. and Apperlrath, H.-J., “Multi-site scheduling with fuzzy concepts”, International Journal of Approximate Reasoning, 19, pp.145-160, 1998.
41. Sauer, J. and Appelrath, H.-J., “Integrating Transportation in a Multi-Site Scheduling Environment”, Proceedings of the 33rd Hawaii International Conference on System Sciences, 2000.
42. Sambasivan, M. and Schmidt, C. P., “A heuristic procedure for solving multi-plant, multi-item, multi-period capacitated lot-sizing problems”, Asia-Pacific Journal of Operational Research, 19,pp. 87-105, 2002.
43. Taylor, S. G. and Plenert, G. J., “Finite Capacity promising.”, Production and Inventory Management Journal, Vol.40, pp.50-56, 1999.
44. Turner, T.J., Mendibil, K., Bititci, U.S., Daisley, P. and Breen, T.H.J., “Improving the reliability of the customer order fulfillment process in a production identification company”, Int. J. Production Economics 78, 99-107, 2002.
45. Vercellis, C., “Multi-plant production planning in capacitated self-configuring two-stage serial systems”, European Journal of Operational Research, Vol. 119, pp. 451-460, 1999.
46. Weng, Z.K., “Strategies for integrating lead time and customer-order decisions”, IIE Transactions 31, 161-171, 1999.
47. Xiong, M., Tor, S.B., Khoo, L.P. and Chen, C.H., “A web-enhanced dynamic BOM-based available-to-promise system”, Int. J. Production Economics 84, 133-147, 2003.