研究生: |
林岱昀 |
---|---|
論文名稱: |
應用PTD-J-X免疫系統複合熱休克蛋白70及樹突細胞於疫苗之研究 The usage of PTD-J-X immunization system with heat shock protein 70 and dendritic cells on the vaccination |
指導教授: |
張立雪
莊景凱 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | PTD-J 區塊 、熱休克蛋白70 、樹突細胞 、口蹄疫病毒 、人類端粒反轉錄酶 |
外文關鍵詞: | PTD-J domain, Hsp 70, Dendritic cells, FMDV, hTERT |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在以E. coli表現重組蛋白質的系統中,當重組蛋白質表現量高時,幾乎皆為不可溶的未摺疊蛋白質。藉由和Hsp40 J domain形成融合蛋白質J-X polypeptide,則可藉與負責伴引之Hsp70 Nucleotide binding domain (NBD)間的特異結合,將未摺疊的蛋白質送到Hsp70之基質摺疊,提高摺疊成正確構形之蛋白質的機會。J-X融合重組蛋白質再加上可穿越細胞膜的protein transduction domain (PTD),就成為PTD-J-X重組蛋白質,可穿越細胞膜成為細胞內抗原,誘發Th1/Tc細胞之細胞免疫反應,而未穿越細胞膜的細胞外PTD-J-X重組蛋白質亦可誘發Th2/B細胞之體液免疫反應。
本論文嘗試利用口蹄疫病毒(FMDV) 蛋白鞘VP1結構蛋白 的Th epitope加B epitope (FMDVepi)來誘發體液免疫反應,以及人類端粒反轉錄酶(hTERT) 的Th epitope加Tc epitope (hTERTepi)來誘發細胞免疫反應;同時,也嘗試連結Hsp70 (特指誘發型Hsp72)會和 Hsp40 J domain親和以及Hsp70可激活樹突細胞 (Dendritic cells , DC)的特性,測試Hsp70是否可以在PTD-J-X epitopes免疫機制上扮演佐劑的角色。
體液免疫反應以FMDVepi、PTD-J-FMDVepi、PTD-J-FMDVepi/mHsp70 (murine Hsp70) 及FMDVepi/mHsp70做抗原免疫BALB/c小鼠後,藉由點漬法分析、西方轉漬法分析、免疫螢光染色來偵測對抗FMDVepi及FMDV VP1全長蛋白的免疫反應。結果顯示注射PTD-J-FMDVepi/mHsp70複合體之小鼠的特異性抗體價數明顯較高。細胞免疫反應則以DCs、PTD-J-hTERTepi/DCs、PTD-J-hTERTepi /mHsp70/ DCs經腹腔注射免疫小鼠後,進行淋巴細胞增殖分析、IFNγ及TNFα酵素免疫點分析法和腫瘤抑制試驗。結果顯示增殖能力及IFNγ的分泌皆以PTD-J-hTERTepi/mHsp70/DCs最佳,而TNFα的分泌相對的差異較小。另外,不論先施打或後施打PTD-J-hTERTepi/DCs均可明顯抑制腫瘤的生長。綜合上述結果指出,PTD-J-X免疫系統複合Hsp70及樹突細胞確實能誘發顯著的免疫反應,進而大幅增強疫苗效能。
Abstract
By using the specific interactions between the J-domain of Hsp40 which holds unfolded proteins and the nucleotide binding domain of Hsp70 which folds the denatured proteins into a native conformation, we have proposed a PTD-J-X recombinant protein model and demonstrated that it could be expressed in large amount with higher solubility in comparison with the trxA-X counterpart in E. coli because of its convenience to attach to the Hsp70 chaperone via the J-domain. Besides the protein folding activity, Hsp70 also acts as a specialized carrier allowing the processed antigen peptides (epitopes) coupled to MHC-I molecular intracellularly and as an endogenous danger signal in the immune system. Here we want to demonstrate the X-antigen presenting characteristics of the PTD-J-X recombinant protein. The membrane penetrating peptide, PTD (protein transduction domain), of the PTD-J-X recombinant protein can carry the covalently-conjugated J-X polypeptide passing through the cell membrane. That is to say, the PTD-J-X recombinant protein is expected to act both as extra-cellular and intra-cellular antigens to elicit the humoral and cellular immunity, respectively.
FMDVepi composing of a Th epitope and B epitopes of the FMDV VP1 capsid protein was used as the X-antigen for the humoral immunity model and hTERTepi which was constructed by two sets of overlapped Th/Tc epitopes of the hTERT protein was chosen as the X-antigen for the cellular immunity model. The recombinant mouse Hsp70 (the inducible form Hsp72) was tested whether it could be utilized as a protein adjuvant to enhance the X-antigen presentation for the PTD-J-X recombinant protein. Four set of FMDVepi compositions, FMDVepi, PTD-J-FMDVepi, PTD-J-FMDVepi/mHsp70 and FMDVepi/mHsp70, mixing with Freund’s adjuvant were injected s.c. to BALB/c mice to test whether the antibodies elicited can recognize the full length VP1 protein or not. All of the three sera from the PTD-J-FMDVepi/mHsp70 set can detect the denatured form and native form of VP1 demonstrating by western blotting and immunofluorescent, respectively.
Since dendritic cells (DCs) were found as the most potent antigen presenting cells, in vitro expanded bone marrow derived DCs were utilized in the PTD-J-hTERTepi induced cellular immunity experiments to improve the sensitivity. Three sets of compositions, DCs, PTD-J-hTERTepi/DCs and PTD-J-hTERTepi/mHsp70/DCs, were injected i.p. into BALB/c mice and activated lymphocytes in spleen were analyzed by lymphocyte proliferation assay and INFγ- and TNF-ELISPOT assays. In comparison to the DCs set results, PTD-J-hTERTepi/DCs could stimulate immune responses and Hsp70 could enhance the responses significantly. Therefore, we tried to investigate whether PTD-J-hTERTepi/DCs could be used as vaccine or therapy in cancer treatment. Either pre-treatment or post-treatment of BALB/c mice with PTD-J-hTERTepi/DCs could reduce the CT26 (hTERT) tumor sizes. Taken together, the PTD-J-X model plays a powerful role in the immune system, both in the humoral and cellular branches, and the Hsp70 acts as an omnipotent adjuvant for the PTD-J-X antigen.
Anand, P.K., (2010), Exosomal membrane molecules are potent immune response modulators. Communicative & Integrative Biol., 3: 405-408.
Anand, P.K., Anand, E., Bleck, C.K.E., Anes, E., and Griffiths< G., (2010), Exosomal Hsp70 induces a pro-inflammatory response to foreign inducing mycobacteria. PLOS ONE, 5(4): e10136.
Asea, A., Kraeft, S.K., Kurt-Jones, E.A., Stevenson, M.A., Chen, L.B., Finberg, R.W., Koo, G.C., Calderwood, S.K., (2000), HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nature Med., 6: 435-442.
Asea, A., Rehli, M., Kabingu, E., Boch, J.A., Bare, O., Auron, P.E., Stevenson, M.A., and Calderwood, S.K. (2002), Novel signal transduction pathway utilized by extracellular HSP70. J. Biol. Chem., 277: 15028-15034.
Bae, J.Y., Moon, S.H., Choi, J.A., Parj, J.S., Hahn, B.S., Kim, K.Y., Kim, B., Song, J.Y., Kwon, D.H., Lee, S.C., Kim, J.B., and Yang, J.S., (2009), Recombinant DNA and protein vaccines for foot-and-mouth disease induce humoral and cellular immune responses in mice. Immune Network, 9: 265-273.
Becker, T., Hartl, E.-U., and Wieland, F., (2002), CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol., 158: 1277-1285.
Blackburn E.H. and Gall, J.G., (1978), A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol., 120: 33-55.
Brasel, K., De Smedt, T., Smith, J.L., and Maliszewski, C.R., (2000), Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood, 96: 3029-3039.
Carotta, S., Dakic, A., D’Amico, A., Milon Pang, S.H., Greig, K.T., Nutt, S.L., and Wu, L., (2010), The transcription factor PU.1 controls dendritic cell development and Flts cytokine receptor expression in a dose-dependent manner. Immunity, 32: 628-641.
Chuang, C.K., Su, Y.S., Fan, C.T., Lee, W.C., and Chen, M.Y., (2009), A dual-functional E. coli vector for expressing recombinant protein with high solubility and antigen presentation ability. Protein Expr. Purif., 65:51-56.
CrotzerV.I., and Blum, J.S., (2010), Autophagy and adaptive immunity. Immunol., 131: 9-17.
De Maio, A. (2011), Extracellular heat shock proteins, cellular export vesicles, and the stress observation system: a form of communication during injury, infection, and damage. Cell Stress Chaperones, 16: 235-249.
Flechtner, J. B., Cohane, K. P., Mehta, S., Slusarewicz, P., Leonard, A. K., Barber, B. H., Levey, D. L., and Andjelic, S., (2006), High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses. J. Immunol., 177:1017-1027.
Gastpar, R., Gehrmann, M., Bausero, M., Asea, A., Gross, C., Schroeder, J.A., and Multhoff, G., (2005), Heat shock protein 70 surface-positive tumor exosomes stimulate migration and cytolytic activity of nature killer cells. Cancer Res., 65: 5238-5247.
Granucci, F., Zanuni, I., (2009), The dendrtic cell cycle. Cell Cycle, 8: 3816-3821.
Greider, C.W. and Blackburn, E.H., (1985), Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell, 43: 405-413.
Greider, C.W. and Blackburn, E.H., (1989), A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature, 337: 331-337.
Griffith, J.D., Comeau, L. Rosenfield, S., Stansel, R.M., Bianchi, A., Moss, H., and de Lange, T., 91999), Mammalian telomeres end in a large duplex loop. Cell, 97: 503-514.
Harada, Y., Ueda, Y., Kinoh, H., Komaru, A., Fuji-Ogawa, T., Furuya, A., Iida A., Hasegawa, M., Ichikawa, T., and Yonemitsu, Y., (2009), Cytokine-based log-scale expansion of functional murine dendritic cells. PLoS ONE, 4(8): e6674
Harley, C.B., *2008), Telomerase and cancer therapeutics. Nat. Rev. Cancer, 8: 167-179.
Kapler, G.M., and Blackburn, E.H., (1993), A weak germ-line excision mutation blocks developmentally controlled amplification of the rDNA minichromosome of Tetrahymena thermophila. Genes Dev., 8: 84-95.
Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L.C., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W., (1994), Specific association of human telomerase activity with immortal cells and cancer. Science, 266: 2011-2015.
Kumar, H., Kawai, T., and Akira, S., (2011), Pathogen recognition by the innate immune system. Int. Rev. Immunol., 30: 16-34.
Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V., and Cech, T.R., (1997), Reverse transcriptase motifs in the catalytic subunit of telomerase. Science, 276: 561-567.
Massa, C., Guiducci, C., Arioli, I., Parenza, M., Colombo, M. P., and Melani, C., (2004), Enhanced efficacy of tumor cell vaccines transfected with secretable HSPs70. Cancer Res., 64: 1502-1508.
McKenna, H.J., Stocking, K.L., Miller, R.E., Brasel, K., De Smedt, T., Maraskovsky, E., Maliszewski, C.R., Lynch, D.H., Smith, J., Pulendran, B., Roux, E.R., Teepe, M., Lyman, S.D., and Peschon, J.J., (2000), Mice lacking flts ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and nature killer cells. Blood, 95: 3489-3497.
Multhhoff, G., and Hightower, L.E., (2011), Distinguishing integral and receptor-bound heat shock protein (Hsp70) on the cell surface vy Hsp70-specific antibodies. Cell Stress Chaperone, 16: 251-5.
Mycko, M.P., Cwiklinska, H., Szymanski, J., Szymanska, B., Kudla, G., Kilianek, L., Odyniec, A., Brosnan, C.F., and Selmaj, K.W., (2004), Inducible Heat Shock Protein 70 Promotes Myelin Autoantigen Presentation by the HLA Class II. J. Immonol., 172: 202-213.
Nussenzweig, M.C., Steinman, R.M., Witmer, M.D., and Gutchinov, B., (1982), A monoclonal antibody specific for mouse dendritic cells. Proc. Natl. Acad. Sci. USA, 79: 161-165.
Pandya, M.J., Bendz, H., Manzenrieder, F., Noessner, E., Kessier, H., Buchner, J., and Issels, R.D., (2009), Interaction of human heat shock protein 70 with tumor-associated peptides. Biol. Chem., 390: 305-312.
Perry, B.D., and Randolf, T.F., (2003), The economics of foot and mouth disease, its control and its eradication. In: Bodet, B. and Vicari, M., Eds. Foot and mouth disease strategies. Paris: Elisevier. Pp23-41.
Qiu, X.-B., et al., (2006), The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci., 63: 2560-2570.
Ritossa, F., (1996), Discovery of the heat shock response. Cell Stres Chaperone, 1: 97-98.
Rodriguez, L.L., Barrera, L., Kramer, E., Lubroth, J., Brown, F., and Golde, W.T., (2003), A synthetic peptide containing the consensus sequence of the G-H loop region of foot-and-mouth disease virus type-O VP1 and a promiscuous T-helper epitope induces peptide specific antibodies but fails to protect cattle against viral challenge. Vaccine, 21: 3751-3756.
Rodriguez, L.L., and Grubman, M.J., (2009), Foot and mouth disease virus vaccines. Vaccine, 27: D90-D97.
Olovnikov, A.M., (1973), A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. T. Theor. Biol., 41: 181-190.
Schmid, M.A., Kingston, D., Boddupalli, S., and Manz, M.G., (2010), Instructive cytokine signals in dendritic cell lineage commitment. Immunol. Rev., 234: 32-44.
Sekaran, V.G. Soares, J., and Jarstfer, M.B., (2010), Structures of telomerase subunits provide functional insights. Biochim. Biophys. Acta, 1804: 1190-1201.
Shortman, K., and Naik, S.H., (2007), Steady-state and inflammatory dendritic-cell development. Nature Rev. Immunol., 7: 19-30.
Silva, M.T., (2010), When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukocyte Biol., 87: 93-106.
Srivastava, P., 2002. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immonol., 2: 185-194.
Steinman, R.M., and Cohn, Z., (1973), Identification of a novel cell type in peripheral lymphoid organ of mice. I. Morphology, Quantitation, tissue distribution. J. Exp. Med., 137: 1142-1162.
Steinman, R.M., and Cohn, Z., (1974), Identification of a novel cell type in peripheral lymphoid organ of mice. II. Functional properties in vitro. J. Exp. Med., 139: 380-396.
Steinman, R.M., and Witmer, M.D., (1978), Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice. Proc. Natl. Acad. Sci. USA, 75: 5132-5136.
Steinman, R.M., Gutchinov, B., Witmer, M.D., and Nussenzweig, M.C., (1983), Dendritic cells are the principal stimulators of the primary mixed leukocyte reaction in mice. J. Exp. Med., 157: 613-627.
Steinman, R.M., (2007), Dendritic cells: understanding immunogenicity. Eur. J. Immunol., 37: 553-560.
Su, C., Duan, X., Wang, X., Wang, C., Cao, R., Zhou, B., and Chen, P., (2007), Heterologous expression of FMDV immunodominant epitopes and HSP70 in P. pastoris and the subsequent immune response in mice. Veterinary Microbiology, 124: 256-263.
Thery, C., Ostrowski, M., and Segura, E., (2009), Membrane vesicles as conveyors of immune responses. Nature Rev. Immunol., 9: 581-593.
Tobian, A.A., Harding, C.V., and Canaday, D.H., (2005), Mycobacterium tuberculosis Heat Shock Fusion Protein Enhances Class I MHC Cross-Processing and -Presentation by B Lymphocytes. J. Immunol., 174: 5209-14.
Ueda, G., Tamura, Y., Hirai, I., Kamiguchi, K., Ichimiya, S., Torigo, T., Hiratsuk, H., Sunakawa, H. and Sato, N., (2004), Tumor-derived heat shock protein 70-pulsed dendritic cells elicit tumor-specific cytotoxic T lymphocytes (CTLs) and tumor immunity. Cancer Sci., 95: 248-253.
Vega, V.L., Rodriguez-Silva, M., Frey, T., Gehrmann, M., Diaz, J.C., Steinem, C., Multhoff, G., Arispe, N., and Maio, A., (2008), Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophage. J. Immonol., 180: 3299-4307.
Veldkamp, C. T., Peterson, F. C., Hayes, P. L., Mattmiller, J. E., Haugner, J. C., Cruz, N., and Volkman,B. F., (2007), On-column refolding of recombinant chemokines for NMR studies and biological assays. Protein Expr. Purif., 52: 202-209.
Vonderheide, R.H., Hahn, W.C., Schultze, J.L., and Nadler, L.M., (1999), The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity, 10: 673-679.
Wan, Y.Y., and Flavell, R.A., (2009), How diverse-CD4effector T cells and their functions. J. Mol. Cell Biol., 1: 20-36.
Watson, J.D., (1972), Origin of concatemeric T7 DNA. Nature, 239: 197-201.Yang, P.C., Chu, R.M., Chung, W.B., and Sung, H.T., (1999), Epidemiological characteristics and financial costs of the 1997 foot-and-mouth disease epidemic in Taiwan. Vet. Res., 25: 731-734.
Wyatt, H.D.M., West, S.C., and Beattie, T.L., (2010), InTERTpreting telomerase structure and function. Nucleic Acids Res. 17: 5609-5622.Yang, X., and Yu, X., (2009), An introduction to epitope prediction methods and software. Rev. Med. Virol., 19: 77-96.
Zorko, M., and Langel, U., (2005), Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Delivery Rev., 57: 529-545.