研究生: |
洪文泰 Wen-Tai Hong |
---|---|
論文名稱: |
奈米碳管強化聚甲基丙烯酸甲酯之奈米複合材料的熱傳性質研究 Investigations on the thermal conductivity of composites reinforced with carbon nanotubes |
指導教授: |
戴念華
Nyan-Hwa Tai |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 奈米複合材料 、奈米碳管 、聚甲基丙烯酸甲酯 、熱傳導係數 |
外文關鍵詞: | Nanocomposites, carbon nanotube, PMMA, thermal conductivity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究以共沉澱法製備奈米碳管複合材料並以暫態平面法測量複合材料的熱導係數。另外,也利用過濾碳管溶液製作奈米碳管薄膜,並利用雷射閃光法測量其熱擴散係數進而計算其熱導係數,如此可以得知奈米碳管薄膜及其所強化的奈米複合材料之熱傳係數,此實驗值將與理論值作比較。除此,純化過程、量測溫度與碳管的異向性大幅影響複合材料的熱導係數,本研究中將加以探討影響的機制。
純化對於碳管熱導性質的影響是利用掃描式電子顯微鏡、熱重分析儀與拉曼等儀器來分析。掃描式電子顯微鏡分析奈米碳管純化前後的差異,發現純化後的碳管存在的金屬粒子變少。熱重的結果顯示純化的確改善了碳管的熱穩定性質;由拉曼分析得知碳管在純化過程會造成表面結構的破壞。在室溫下,單壁奈米碳管薄膜的熱導係數為2.24 W/m K,多壁奈米碳管薄膜為0.36 W/m K。另一方面,單壁與多壁奈米碳管薄膜的熱導係數並未隨著溫度的增加而上升,而是逐漸下降的。本研究對奈米複合材料的熱傳導係數進行研究,結果顯示添加4.0 wt%未純化的多壁奈米碳管對於複合材料熱導性質的提升量最高,可達到基材熱導係數的十倍以上。大致說來,奈米碳管複合材料的熱導係數皆隨著碳管含量與溫度的增加而上升。
In this work, we prepared carbon nanotubes/polymethyl methacrylate(CNTs/PMMA) composites and measured its thermal conductivity by the Transient Plane Source (TPS) method. Moreover, we prepared CNTs buckypapers from CNTs suspension and measured its thermal diffusivity by the laser flash method for calculating the thermal conductivity of the buckypapers. The thermal conductivity of the composites fabricated from buckypapers was also investigated, the results were compared with the theoretical predictions. The effects of purification, test temperature and anisotropy of CNTs on thermal conductivity of the composites were investigated.
The influences of the purification process on CNTs was analyzed by Thermogravimetry Analyzer (TGA)、Raman Scattering Spectrometer (Raman) and Field Emission Scanning Electron Microscopy (FESEM). FESEM images showed that the catalysts metals in CNTs were reduced after the purification process. The TGA results showed that thermal stability of CNTs was improved after purification, but the structure of carbon nanotubes was also damaged. The thermal conductivities at room temperature of SWNT and MWNT films were 2.24 W/m K, and 0.36 W/m K, respectively. The thermal conductivities of CNT films increased with decreased of temperature. In this study, the highest thermal conductivity of W/m K was attained when the unpurified MWNTs loadings reaches 4.0 wt %, which is over 10 times higher than the thermal conductivity of PMMA. The thermal conductivity of composites increases with CNT loadings and temperature was also detected.
1.S. K. Amin, M. Mohammad, B. Reza and F. Brian,“Temperature effects on Kevlar/hybrid and carbon fiber composite sandwiches under impact loading”, Composite Structures 78, 197–206 (2007)
2.E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren and T. W. Chou,“Carbon nanotube/carbon fiber hybrid multiscale composites”, Journal of Applied Physics 91, 6034-6037(2002)
3.M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson,“Exceptionally high Young’s Modulus observed for individual carbon nanotubes”, Nature 381, 678-680 (1997)
4.S. Iijima, “Helical Microtubules of Graphitic Carbon” , Nature 354, 56-58 (1991)
5.A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos and M. M. J. Treacy, “Young’s modulus of single-walled nanotubes”, Physical Review B: 58, 20 (1998)
6.N. Mingo and D. A. Broido, “Carbon Nanotube Ballistic Thermal Conductance and its Limits ”, Physical Review Letters 95, 096105 (2005)
7.X. S. Yang, “Modelling Heat Transfer of Carbon Nanotubes”, Modelling and Simulation in Materials Science and Engineering 13, 893-902 (2005)
8.J. Hone, et al, “Thermal Properties of Carbon Nanotubes and Nanotube-Based Materials”, Applied Physics a-Materials Science & Processing 74, 339-343 (2002)
9.C. Jianwei, C. Tahir and A. G. William, “Thermal Conductivity of Carbon Nanotubes”, Nanotechnology 11, 65–69 (2000)
10.F. Motoo, Z. Xing, X. Huaqing, A. Hiroki, T. Koji, I. Tatsuya, A. Hidekazu and S. Tetsuo, “Measuring the Thermal Conductivity of a Single Carbon Nanotube”, Physical Review Letters 95, 065502 (2005)
11.T. Ramanathan, F. T. Fisher, R. S. Ruoff and L. C. Brinson, “Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems”, Chemistry of Materials. 17, 1290-1295 (2005)
12.C. C. Thomas and S. G. Thomas, “Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites”, Polymer 47, 5990-5996 (2006)
13.Q. Z. Xue, “Model for Thermal Conductivity of Carbon Nanotube-Based Composites”, Physica B 368, 302-307 (2005)
14.S. Shenogin, A. Bodapati, L. Xue, R. Ozisik and P. Keblinski, “Effect of Chemical Functionalization on Thermal Transport of Carbon Nanotube Composites”, Applied Physics Letters 85, 2229-2231 (2004)
15.W. Zhi, L. Zhiyong, W. Ben Wang, Z. Chuck and K. Leslie, “Processing and Property Investigation of Single-Walled Carbon Nanotube”, Composites: Part A35, 1225–1232 (2004)
16.Y. H. Yun, V. Shanov and M. J. Schulz, “Development of novel single-wall carbon nanotube–epoxy composite ply actuators”, Smart Materials and Structures 14, 1526–1532 (2005)
17.G. Philippe, L. Zhiyong, S. C. Eun, S. K. Ravi, S. B. James, Z. Chuck, W. Ben and K. Leslie, “Thermal Conductivity of Magnetically Aligned Carbon Nanotube”, Current Applied Physics, 6, 119–122 (2006)
18.S. Saion, B. Saimir, I. Germano, S. Alexander and M. George, “Off-Axis Thermal Properties of Carbon Nanotube Films”, Journal of Nanoparticle Research 7, 651-657 (2005)
19.C. Qin , X. Shia, S.Q. Bai , L.D. Chena and L.J. Wang, “High Temperature Electrical and Thermal Properties of the Bulk carbon nanotube prepared by SPS”, Materials Science and Engineering A 420, 208–211 (2006)
20.C. W. Nan, Z. Shi and Y. Lin, “A Simple Model for Thermal Conductivity of Carbon Nanotube-Based Composites”, Chemical Physics Letters 375, 666-669 (2003)
21.C. W. Nan, L. Gang, L. Yuanhua and Ming Li, “Interface Effect on Thermal Conductivity of Carbon Nanotube Composites” , Applied Physics Letters 85, 3549-3551 (2004)
22.成會明編著,奈米碳管,五南圖書出版公司 (2004)
23.Q. Z. Xue, “Model for the effective thermal conductivity of carbon nanotube composites”, Nanotechnology 17, 1655–1660 (2006)
24.W. T. Doyle and I. S. Jacobs, “The Influence of Particle Shape on Dielectric Enhancement in Metal-Insulator Composites”, Journal of Applied Physics 71, 3926-3936 (1992)
25.L. Gao, K. W. Yu, Z. Y. Li and H. Bambi, “Effective Nonlinear Optical Properties of Metal-Dielectric Composite Media with Shape Distribution”, Physical Review E: 64, 036615 (2001)
26.T. H. Scott, G. C. David, S. Sergei, X. Liping, O. Rahmi, B. Paul, U. Monica, S. S. Michael, S. Giles, S. Moonsub and K. Pawel, “Interfacial Heat Flow in Carbon Nanotube Suspensions”, Nature Materials 2, 731-734 (2003)
27.A. N. Lagarkov and A. K. Sarychev, “Electromagnetic properties of composites containing elongated conducting inclusions”, Physical Review B: 53, 6318-6336 (1996)
28.M. Moniruzzaman and K. I. Winey, “Polymer Nanocomposites Containing Carbon Nanotubes”, Macromolecules 39.16, 5194-5205 (2006)
29.M. Tony, P. Petra, H. Peter, M. Michael, M. Darren and Gerard P. Brennane Steven E.J. Belld, B. Daniel, L. Patrick and P. Q. John, “Polyethylene Multiwalled Carbon Nanotube Composites”, Polymer 46, 8222-8232 (2005)
30.E. G. Russell, K. S. L. Kenneth, K. G. Karen and E. C. Robert, “The Importance of Interfacial Design at the Carbon Nanotube/Polymer Composite Interface”, Journal of Applied Polymer Science, 102, 1413–1418 (2006)
31.M. B. Bryning, D. E. Milkie, M. F. Islam, J. M. Kikkawa and A. G. Yodh, “Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites”, Applied Physics Letters 87, 161909 (2005)
32.C. H. Liu, H. Huang, Y. Wu and S. S. Fan, “Thermal Conductivity Improvement of Silicone Elastomer with Carbon Nanotube Loading”, Applied Physics Letters 84, 4248-4250 (2004)
33.M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun and A. T. Johnson, “Carbon Nanotube Composites for Thermal Management”, Applied Physics Letters 80, 2767-2769 (2002)
34.A. Moisala, Q. Li, I. A. Kinloch and A. H. Windle, “Thermal and Electrical Conductivity of Single- and Multi-Walled carbon nanotube-epoxy composites”, Composites Science and Technology 66, 1285–1288 (2006)
35.S. W. Kim, et al, “Thermophysical Properties of Multi-Walled Carbon Nanotube-Reinforced Polypropylene Composites”, International Journal of Thermophysics 27, 152-160 (2006)
36.Y. Aiping, E. I. Mikhail, B. Elena and C. H. Robert, “Effect of Single-Walled Carbon Nanotube Purity on the Thermal Conductivity of Carbon Nanotube-Based Composites”, Applied Physics Letters 89, 133102 (2006)
37.R. Haggenmueller , H. H. Gommans , A. G. Rinzler , J. E. Fischer and K. I. Winey, “Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods”, Chemical Physics Letters 330, 219-225 (2000)
38.E. S. Choi, J. S. Brooks and D. L. Eaton, “Enhancement of Thermal and Electrical Properties of Carbon Nanotube Polymer Composites by Magnetic Field Processing”, Journal of Applied Physics 94, 6034-6039 (2003)
39.F. M. Du, et al, “An Infiltration Method for Preparing Single-Wall Nanotube/Epoxy Composites with Improved Thermal Conductivity”, Journal of Polymer Science Part B: Polymer Physics 44, 1513-1519 (2006)
40.F. Wu, X. He, Y. Zeng and H. M. Cheng, “Thermal Transport Enhancement of Multi-Walled Carbon Nanotubes/High-Density Polyethylene Composites”, Applied Physics A 85, 25-28 (2006)
41.R. D. Cowan, “Pulse Method of Measuring Thermal Diffusivity at High Temperatures”, Journal of Applied Physics 34, 926-927 (1964)
42.饒達仁、簡恆傑,“薄膜熱傳導性能之創新量測方法”,電子月刊,越吟出版社, 十月刊號第135期 (2006)
43.L. Lu, W. Yi and D. L. Zhang, “3ω Method for Specific Heat and Thermal Conductivity Measurements”, Review of Scientific Instrument 72 , 2996-3003 (2002)
44.J. Hone, M. Whitney, C. Piskoti and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Physical Review B 59, 2514-2516 (1999)
45.S. Rudtsch and U. Hammerschmidt, “Intercomparison of Measurements of the Thermophysical Properties of Polymethyl Methacrylate”, International Journal of Thermophysics, 25, 1475-1482 (2004)
46.S. Berber, Y. K. Kwon and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes”, Physical Review Letters 84, 4613-4616 (2000)
47.A. Rajni, N. S. Saxena, B. S. Kanan, S. Thomas and M. S. Sreekala, “Temperature Dependence of Effective Thermal Conductivity and Thermal Diffusivity of Treated and Untreated Polymer Composites”, Journal of Applied Polymer Science, 89, 1708–1714 (2003)
48.楊健鑫「以流動觸媒法合成單層奈米碳管及雙層奈米碳管之製程研究」,國立清華大學材料科學工程研究所碩士論文,中華民國九十三年七月。
49.劉家豪「多壁奈米碳管/酚醛樹脂複合材料之機械性質研究」,國立清華大學材料科學工程研究所碩士論文,中華民國九十三年六月。
50.L. H. Sperling, “Introduction to Physical Polymer Science”, John Wiley & Sons, third edition, 302-303 (2001)