研究生: |
周晉宇 Chou, Chin-Yu |
---|---|
論文名稱: |
運用三維機械耦合陣列之CMOS-MEMS共振器與振盪器研製 AN INNOVATIVE 3-D MECHANICALLY-COUPLED ARRAY DESIGN FOR MEMS RESONATOR AND OSCILLATORS |
指導教授: |
李昇憲
Li, Sheng-Shian |
口試委員: |
方維倫
Fang, Wei-Leun 鄭裕庭 Cheng, Yu-Ting 李尉彰 Li, Wei-Chang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 三維耦合陣列 、垂直耦合共振器 、電容式元件 、微機械共振器 、CMOS-MEMS 振盪器 |
外文關鍵詞: | 3-D coupled array, Vertical Couple, Capacitive, Micromechanical Resonators, CMOS-MEMS Oscillators |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首次實現三維耦合陣列之微機電共振器與振盪器,我們基於CMOS-MEMS標準製程成功將過去開發之CMOS-MEMS垂直耦合(Vertically Coupled, VC)共振器[1]展延至三維耦合形貌,並結合同平台之0.35 m CMOS介面電路實現單晶片微機械電路。三維共振器陣列的設計為側向連結9對垂直耦合共振器(N = 18, N代表著組成陣列之共振器的數目),量測結果得到其共振頻位在5.64 MHz,且品質因數Q為1,092。我們比較九對(N = 18)陣列(亦即三維耦合陣列)與單對(N = 2)之垂直耦合共振器,三維耦合陣列透過電極的設計配置能夠完全地消除馬鞍型(Saddle, SA)模態[2] (非目標之模態),但仍有其他Spurious Modes位於垂直耦合共振模態附近。在同樣的直流偏壓下三維耦合陣列相較單對元件具有較佳之功率負載能力。本研究亦整合Lock-in + PLL電路系統,使三維耦合陣列式振盪器成功起振,根據量測結果,四對垂直耦合共振對陣列相較單對降低了6 dB的相位雜訊,我們期待此技術未來能帶來更多功能及應用,如傳統積體電路的發展歷程一般,朝向中型微機械積體電路 (Medium-Scale Integrated Micromechanical Circuits, MSI)方向邁進。
A 3-D mechanically-coupled resonator array has been demonstrated for the first time using CMOS-MEMS technology. A high-performance vertically-coupled (VC) CMOS-MEMS resonator pair is utilized to extend the array topology into 3-D configuration with on-chip interfaced circuit through a TSMC 0.35 μm 2P4M CMOS-MEMS platform. An array design of 9 VC pairs (N = 18 where N is the number of constituent resonators of an array) was fabricated and characterized with resonance frequency of 5.64 MHz and Q-factor of 1,092. As compared to a single VC pair (N = 2), the Saddle (SA) mode (undesired mode) is eliminated in the array design by the use of electrode phasing [2] at the cost of weak spurious modes around the desired resonance. Under same dc biasing, the proposed 3-D array achieves better power handling over the single VC pair. The 3-D array oscillator was also realized by using an instrumental Lock-in + PLL system. It reveals that the 4-VC SPR array features a 6-dB in-band phase noise improvement as compared to the single one. This technology is expected to bring more functionalities towards medium-scale integrated (MSI) micromechanical circuits.
[1] F. D. Bannon, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” Journal of solid-state circuits, vol. 35, no. 4, pp. 512-526, Apr. 2000.
[2] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 346-357, vol. 59, no. 3, March 2012.
[3] M.-H. Li, W.-C. Chen, and S.-S. Li, “Mechanically coupled CMOS-MEMS Free-Free beam Resonator Arrays with Two-Port Configuration,” IEEE Frequency Control and the European Frequency and Time Forum (FCS), pp. 1-4, August 2011.
[4] M.-U. Demirci, and Clark T.-C. Nguyen, “Mechanically corner-coupled square microresonator array for reduced series motional resistance,” Journal of Microelectromechanical Systems, vol. 15, no. 6, pp. 1419-1436, Dec 2006.
[5] M.-H. Li, C.-Y. Chen, W.-C. Chen, and S.-S. Li, “A vertically coupled MEMS resonator pair for oscillator applications,” Journal of Microelectromechanical Systems, vol. 24, no. 3, pp. 528-530, June 2015.
[6] M. U. Demirci and Clark T.-C. Nguyen, “A low impedance VHF micromechanical filter using coupled-array composite resonators,” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, vol. 2, pp. 2131-2134, May 2015.
[7] D. Weinstein, S. A. Bhave, M. Tada, S. Mitarai, and S. Morita, “Mechanical coupling of 2D resonator arrays for MEMS filter Applications,” IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, pp. 1362-1365, May 2007.
[8] J.-R. Clark. M. Pai, B. Wissman, G. He, and W. T. Hsu, “Parallel-coupled square-resonator micromechanical filter arrays,” IEEE International Frequency Control Symposium and Exposition, pp. 485-490, May 2006.
[9] Y.-W. Lin, L.-W. Hung, S.-S. Li, Z. Ren, and C. T.-C. Nguyen, “Quality factor boosting via mechanically-coupled arraying,” Papers the 14th Int. Conf. on Solid-State Sensors & Actuators (Transducers'07), pp. 2453-2456, June 2007.
[10] M.-H. Li, C.-Y. Chen, C.-H. Chin, C.-S. Li and S.-S. Li, “Optimizing the close-to-carrier phase noise of monolithic CMOS-MEMS oscillators using bias-dependent nonlinearity,” IEEE International Electron Devices Meeting, pp. 22.3.1-22.3.4, 2007.
[11] A. Imani and H. Hashemi, “Analysis and design of low phase-noise oscillators with nonlinear resonators,” Microwave Theory and Techniques, IEEE Transactions, vol. 60, no. 12, pp. 3749-3760, Dec. 2012.
[12] A. Erbes, P. Thiruvenkatanathan, J. Woodhouse and A.-A. Seshia, “Numerical study of the impact of vibration localization on the motional resistance of weakly coupled MEMS resonators,” Journal of Microelectromechanical Systems, vol. 24, no. 4, pp. 997-1005, August 2015.