研究生: |
劉芳驛 Liu, Fang-Yi |
---|---|
論文名稱: |
具靶向性及多響應性多孔二氧化錳包覆之奈米藥物進行大腸癌化學/化學動力治療 Targeted Delivery of Multi-responsive Mesoporous Manganese Dioxide Coated Nanotherapeutics for Chemo/Chemodynamic Therapies of Colorectal Cancer |
指導教授: |
邱信程
Chiu, Hsin-Cheng |
口試委員: |
駱俊良
Lo, Chun-Liang 姜文軒 Chiang, Wen-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 二氧化錳 、氧化鉍 、轉鐵蛋白 、大腸癌 、化學治療 、化學動力治療 |
外文關鍵詞: | Manganese Dioxide, Bismuth Oxide, Transferrin, Colorectal Cancer, Chemotherapy, Chemodynamic Therapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多孔性二氧化錳奈米殼層包覆氧化鉍奈米核球,搭載化療藥物 Vorinostat (suberoylanilide hydroxamic acid, SAHA),表層再修飾上 mouse serum albumin (MSA) 及 apo-transferrin (Tf),形成最終奈米藥物用以治療大腸癌,利用其對癌細胞具有靶向性及多響應性進行化學/化學動力治療,以增強療效並減少對一般組織的副作用。因 Tf 的標靶性,奈米藥物可以有效地被細胞攝入,而所製備的奈米藥物中,二氧化錳可以於細胞中引發 fenton-like reactions,產生具有毒性的活性氧物質 (ROS),達到化學動力治療的效果,在此同時,受到癌細胞及腫瘤微環境中酸性、高濃度過氧化氫 (H2O2)、高濃度穀胱甘肽 (GSH) 的影響,二氧化錳會降解並釋放出搭載的化療藥物 SAHA,也產生了氧氣,減緩缺氧情形。而 SAHA 能夠以釋放細胞色素c (cytochrome c) 為特徵的線粒體介導的死亡途徑來引發細胞死亡和產生 ROS,達到化療的效果。重要的是,氧化鉍奈米核球可以有效降低大腸癌細胞中高濃度硫化氫 (H2S),防止 fenton-like reactions 產生的 ROS 被 H2S 消耗,進而增強化學動力治療的效果。
In this study, we used bismuth oxide nanospheres with porous manganese dioxide nanoshells coating, loading Vorinostat (suberoylanilide hydroxamic acid, SAHA) which is a chemotherapy drug, and the surface of particle was modified with mouse serum albumin (MSA) and apo-transferrin (Tf). The final nano-drug was used for the treatment of colorectal cancer. The targeting and multi-responsive ability to cancer cells enhanced the chemo/chemodynamic therapy efficacy and reduced the side effects on general tissues. The targeting ability of Tf improved the cellur uptake of nano-drug. The manganese dioxide of the nano-drug triggered fenton-like reactions to generate toxic reactive oxygen species (ROS) for chemodynamic therapy in the cells. At the same time, with the acidity, high concentration of H2O2 and GSH in cancer cells and the tumor microenvironment, manganese dioxide not only degraded and released SAHA, but also produced oxygen to alleviate hypoxic conditions. SAHA can trigger cell death through mitochondria-mediated death pathways characterized by cytochrome c release and the production of reactive oxygen species. Bismuth oxide nanospheres can effectively reduce the high concentration of H2S in colorectal cancer cells, prevent the ROS produced by fenton-like reactions from being consumed by H2S to enhance the effect of chemodynamic therapy.
1. Gill, S.; Thomas, R.; Goldberg, R., Colorectal cancer chemotherapy. Alimentary pharmacology & therapeutics 2003, 18 (7), 683-692.
2. 2020年最新全球癌症大數據報告. https://www.snq.org.tw/chinese/11_expertcolumn/detail.php?SID=552&MID=17.
3. 109年癌症登記報告. https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4576&pid=16436.
4. Banerjee, A.; Pathak, S.; Subramanium, V. D.; Dharanivasan, G.; Murugesan, R.; Verma, R. S., Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug discovery today 2017, 22 (8), 1224-1232.
5. Brenner, H.; Kloor, M.; Pox, C. P., Colorectal cancer. Lancet 2014, 383, 1490-1502.
6. Stage of diagnosis. https://www.ccalliance.org/colorectal-cancer-information/stage-of-diagnosis.
7. Jin, M.-Z.; Jin, W.-L., The updated landscape of tumor microenvironment and drug repurposing. Signal transduction and targeted therapy 2020, 5 (1), 1-16.
8. Wang, X.; Li, C.; Jin, H.; Wang, X.; Ding, C.; Cao, D.; Zhao, L.; Deng, G.; Lu, J.; Wan, Z., Mutual promotion of oxidative stress amplification and calcium overload by degradable spatially selective self-cascade catalyst for synergistic tumor therapy. Chemical Engineering Journal 2022, 432, 134438.
9. Prasad, P.; Gordijo, C. R.; Abbasi, A. Z.; Maeda, A.; Ip, A.; Rauth, A. M.; DaCosta, R. S.; Wu, X. Y., Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS nano 2014, 8 (4), 3202-3212.
10. Gilkes, D. M.; Semenza, G. L.; Wirtz, D., Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nature Reviews Cancer 2014, 14 (6), 430-439.
11. He, C.; Zhang, X.; Yan, R.; Zhao, P.; Chen, Y.; Li, M.; Chen, C.; Fan, T.; Lu, Y.; Wang, C., Enhancement of cisplatin efficacy by lipid–CaO2 nanocarrier-mediated comprehensive modulation of the tumor microenvironment. Biomaterials science 2019, 7 (10), 4260-4272.
12. Ranji-Burachaloo, H.; Gurr, P. A.; Dunstan, D. E.; Qiao, G. G., Cancer treatment through nanoparticle-facilitated fenton reaction. Acs Nano 2018, 12 (12), 11819-11837.
13. Barker, H. E.; Paget, J. T.; Khan, A. A.; Harrington, K. J., The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature Reviews Cancer 2015, 15 (7), 409-425.
14. Sun, T.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M.; Xia, Y., Engineered nanoparticles for drug delivery in cancer therapy. Nanomaterials and Neoplasms 2021, 31-142.
15. Owen, S. C.; Doak, A. K.; Wassam, P.; Shoichet, M. S.; Shoichet, B. K., Colloidal aggregation affects the efficacy of anticancer drugs in cell culture. ACS chemical biology 2012, 7 (8), 1429-1435.
16. Torchilin, V. P.; Lukyanov, A. N.; Gao, Z.; Papahadjopoulos-Sternberg, B., Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proceedings of the National Academy of Sciences 2003, 100 (10), 6039-6044.
17. Li, Y.-P.; Pei, Y.-Y.; Zhang, X.-Y.; Gu, Z.-H.; Zhou, Z.-H.; Yuan, W.-F.; Zhou, J.-J.; Zhu, J.-H.; Gao, X.-J., PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. Journal of controlled release 2001, 71 (2), 203-211.
18. Khan, M. I.; Hossain, M. I.; Hossain, M. K.; Rubel, M.; Hossain, K.; Mahfuz, A.; Anik, M. I., Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Applied Bio Materials 2022, 5 (3), 971-1012.
19. Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C., Cancer nanomedicine: progress, challenges and opportunities. Nature reviews cancer 2017, 17 (1), 20-37.
20. Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T., Cancer active targeting by nanoparticles: a comprehensive review of literature. Journal of cancer research and clinical oncology 2015, 141 (5), 769-784.
21. Liu, J.; Bu, W.; Pan, L.; Shi, J., NIR‐triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene‐modified mesoporous silica. Angewandte Chemie 2013, 125 (16), 4471-4475.
22. Qian, C.; Yu, J.; Chen, Y.; Hu, Q.; Xiao, X.; Sun, W.; Wang, C.; Feng, P.; Shen, Q. D.; Gu, Z., Light‐activated hypoxia‐responsive nanocarriers for enhanced anticancer therapy. Advanced materials 2016, 28 (17), 3313-3320.
23. Luo, Z.; Hu, Y.; Cai, K.; Ding, X.; Zhang, Q.; Li, M.; Ma, X.; Zhang, B.; Zeng, Y.; Li, P., Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity. Biomaterials 2014, 35 (27), 7951-7962.
24. Li, Z.; Hu, Y.; Jiang, T.; Howard, K. A.; Li, Y.; Fan, X.; Sun, Y.; Besenbacher, F.; Yu, M., Human‐serum‐albumin‐coated prussian blue nanoparticles as pH‐/thermotriggered drug‐delivery vehicles for cancer thermochemotherapy. Particle & Particle Systems Characterization 2016, 33 (1), 53-62.
25. Li, Z.; Hu, Y.; Miao, Z.; Xu, H.; Li, C.; Zhao, Y.; Li, Z.; Chang, M.; Ma, Z.; Sun, Y., Dual-stimuli responsive bismuth nanoraspberries for multimodal imaging and combined cancer therapy. Nano letters 2018, 18 (11), 6778-6788.
26. Hosseini, S. A.; Saeedi, R., Photocatalytic degradation of methyl orange on Bi2O3 and Ag2O-Bi2O3 nano photocatalysts. Bulletin of Chemical Reaction Engineering & Catalysis 2017, 12 (1), 96-105.
27. Qin, F.; Zhao, H.; Li, G.; Yang, H.; Li, J.; Wang, R.; Liu, Y.; Hu, J.; Sun, H.; Chen, R., Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale 2014, 6 (10), 5402-5409.
28. Bera, K. K.; Majumdar, R.; Chakraborty, M.; Bhattacharya, S. K., Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. J Hazard Mater 2018, 352, 182-191.
29. Mallahi, M.; Shokuhfar, A.; Vaezi, M.; Esmaeilirad, A.; Mazinani, V., Synthesis and characterization of bismuth oxide nanoparticles via sol-gel method. AJER 2014, 3 (4), 162-5.
30. Rudin, T.; Wegner, K.; Pratsinis, S. E., Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors. Journal of Nanoparticle Research 2011, 13 (7), 2715-2725.
31. Park, S.; An, S.; Ko, H.; Lee, C., Fabrication, structure, and gas sensing of multiple-networked Pt-functionalized Bi2O3 nanowires. Journal of Nanoscience and Nanotechnology 2015, 15 (2), 1605-1609.
32. Brezesinski, K.; Ostermann, R.; Hartmann, P.; Perlich, J.; Brezesinski, T., Exceptional photocatalytic activity of ordered mesoporous β-Bi2O3 thin films and electrospun nanofiber mats. Chemistry of Materials 2010, 22 (10), 3079-3085.
33. Wang, J.; Yang, X.; Zhao, K.; Xu, P.; Zong, L.; Yu, R.; Wang, D.; Deng, J.; Chen, J.; Xing, X., Precursor-induced fabrication of β-Bi2O3 microspheres and their performance as visible-light-driven photocatalysts. Journal of Materials Chemistry A 2013, 1 (32), 9069-9074.
34. El-Batal, A. I.; Nada, H. G.; El-Behery, R. R.; Gobara, M.; El-Sayyad, G. S., Nystatin-mediated bismuth oxide nano-drug synthesis using gamma rays for increasing the antimicrobial and antibiofilm activities against some pathogenic bacteria and Candida species. RSC advances 2020, 10 (16), 9274-9289.
35. Fan, H.; Pan, S.; Teng, X.; Ye, C.; Li, G.; Zhang, L., δ-Bi2O3 thin films prepared by reactive sputtering: Fabrication and characterization. Thin solid films 2006, 513 (1-2), 142-147.
36. Li, R.; Chen, W.; Kobayashi, H.; Ma, C., Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chemistry 2010, 12 (2), 212-215.
37. Raza, W.; Haque, M.; Muneer, M.; Harada, T.; Matsumura, M., Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. Journal of Alloys and Compounds 2015, 648, 641-650.
38. Gou, X.; Li, R.; Wang, G.; Chen, Z.; Wexler, D., Room-temperature solution synthesis of Bi2O3 nanowires for gas sensing application. Nanotechnology 2009, 20 (49), 495501.
39. Bhalerao, K. D.; Nakate, Y. T.; Choudhury, S. P.; Nakate, U. T.; Yewale, M.; Kadam, S.; Ingole, R.; Kulkarni, S.; Khollam, Y., Synthesis, characterizations, and hydrogen sulfide gas sensing application of BiOx (x= 1, 1.5) nanostructures. International Journal of Hydrogen Energy 2022.
40. Malik, P.; Chakraborty, D., Bi2O3-catalyzed oxidation of aldehydes with t-BuOOH. Tetrahedron Letters 2010, 51 (27), 3521-3523.
41. Xia, F.; Xu, X.; Li, X.; Zhang, L.; Zhang, L.; Qiu, H.; Wang, W.; Liu, Y.; Gao, J., Preparation of bismuth nanoparticles in aqueous solution and its catalytic performance for the reduction of 4-nitrophenol. Industrial & Engineering Chemistry Research 2014, 53 (26), 10576-10582.
42. Schlesinger, M.; Weber, M.; Schulze, S.; Hietschold, M.; Mehring, M., Metastable β‐Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. ChemistryOpen 2013, 2 (4), 146-155.
43. Mahmoud, W. E.; Al‐Ghamdi, A., Synthesis and properties of bismuth oxide nanoshell coated polyaniline nanoparticles for promising photovoltaic properties. Polymers for Advanced Technologies 2011, 22 (6), 877-881.
44. Oviedo, M.; Contreras, O.; Rosenstein, Y.; Vazquez-Duhalt, R.; Macedo, Z.; Carbajal-Arizaga, G.; Hirata, G., New bismuth germanate oxide nanoparticle material for biolabel applications in medicine. Journal of Nanomaterials 2016, 2016.
45. Abudayyak, M.; Öztaş, E.; Arici, M.; Özhan, G., Investigation of the toxicity of bismuth oxide nanoparticles in various cell lines. Chemosphere 2017, 169, 117-123.
46. Jassim, A. M.; Farhan, S. A.; Salman, J. A.; Khalaf, K. J.; Al Marjani, M. F.; Mohammed, M. T., Study the antibacterial effect of bismuth oxide and tellurium nanoparticles. Int j chem biol sci 2015, 1 (3), 81-84.
47. He, T.; Xu, H.; Zhang, Y.; Yi, S.; Cui, R.; Xing, S.; Wei, C.; Lin, J.; Huang, P., Glucose oxidase-instructed traceable self-oxygenation/hyperthermia dually enhanced cancer starvation therapy. Theranostics 2020, 10 (4), 1544.
48. Bi, H.; Dai, Y.; Yang, P.; Xu, J.; Yang, D.; Gai, S.; He, F.; An, G.; Zhong, C.; Lin, J., Glutathione and H2O2 consumption promoted photodynamic and chemotherapy based on biodegradable MnO2–Pt@ Au25 nanosheets. Chemical Engineering Journal 2019, 356, 543-553.
49. Yuan, X.; Yin, Y.; Zan, W.; Sun, X.; Yang, Q., Hybrid manganese dioxide-bovine serum albumin nanostructure incorporated with doxorubicin and IR780 for enhanced breast cancer chemo-photothermal therapy. Drug Delivery 2019, 26 (1), 1254-1264.
50. Liu, J.; Zhang, W.; Kumar, A.; Rong, X.; Yang, W.; Chen, H.; Xie, J.; Wang, Y., Acridine orange encapsulated mesoporous manganese dioxide nanoparticles to enhance radiotherapy. Bioconjugate Chemistry 2019, 31 (1), 82-92.
51. Wang, Y.; Shang, W.; Zhong, H.; Luo, T.; Niu, M.; Xu, K.; Tian, J., Tumor vessel targeted self-assemble nanoparticles for amplification and prediction of the embolization effect in hepatocellular carcinoma. ACS nano 2020, 14 (11), 14907-14918.
52. Zeng, D.; Wang, L.; Tian, L.; Zhao, S.; Zhang, X.; Li, H., Synergistic photothermal/photodynamic suppression of prostatic carcinoma by targeted biodegradable MnO2 nanosheets. Drug delivery 2019, 26 (1), 661-672.
53. Wen, L.; Hyoju, R.; Wang, P.; Shi, L.; Li, C.; Li, M.; Wang, X., Hydrogen‐peroxide‐responsive protein biomimetic nanoparticles for photothermal‐photodynamic combination therapy of melanoma. Lasers in Surgery and Medicine 2021, 53 (3), 390-399.
54. Zhang, Z.; Ji, Y.; Chen, W., Hollow MnO2/GNPs serving as a multiresponsive nanocarrier for controlled drug release. Chinese Journal of Chemical Engineering 2020, 28 (5), 1405-1414.
55. Sobańska, Z.; Roszak, J.; Kowalczyk, K.; Stępnik, M., Applications and biological activity of nanoparticles of manganese and manganese oxides in in vitro and in vivo models. Nanomaterials 2021, 11 (5), 1084.
56. Tian, Q.; Xue, F.; Wang, Y.; Cheng, Y.; An, L.; Yang, S.; Chen, X.; Huang, G., Recent advances in enhanced chemodynamic therapy strategies. Nano Today 2021, 39, 101162.
57. Xu, J.; Shi, R.; Chen, G.; Dong, S.; Yang, P.; Zhang, Z.; Niu, N.; Gai, S.; He, F.; Fu, Y., All-in-one theranostic nanomedicine with ultrabright second near-infrared emission for tumor-modulated bioimaging and chemodynamic/photodynamic therapy. ACS nano 2020, 14 (8), 9613-9625.
58. Tang, Z.; Liu, Y.; He, M.; Bu, W., Chemodynamic therapy: tumour microenvironment‐mediated fenton and fenton‐like reactions. Angewandte Chemie International Edition 2019, 58 (4), 946-956.
59. Bokare, A. D.; Choi, W., Review of iron-free fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of hazardous materials 2014, 275, 121-135.
60. Feng, W.; Han, X.; Wang, R.; Gao, X.; Hu, P.; Yue, W.; Chen, Y.; Shi, J., Nanocatalysts‐augmented and photothermal‐enhanced tumor‐specific sequential nanocatalytic therapy in both NIR‐I and NIR‐II biowindows. Advanced Materials 2019, 31 (5), 1805919.
61. Zhang, L.; Nie, Y.; Hu, C.; Hu, X., Decolorization of methylene blue in layered manganese oxide suspension with H2O2. Journal of hazardous materials 2011, 190 (1-3), 780-785.
62. Kong, L.; Wei, W.; Zhao, Q.; Wang, J.-Q.; Wan, Y., Active coordinatively unsaturated manganese monoxide-containing mesoporous carbon catalyst in wet peroxide oxidation. Acs Catalysis 2012, 2 (12), 2577-2586.
63. Urandur, S.; Banala, V. T.; Shukla, R. P.; Gautam, S.; Marwaha, D.; Rai, N.; Sharma, M.; Sharma, S.; Ramarao, P.; Mishra, P. R., Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy. Acta Biomaterialia 2020, 113, 522-540.
64. Richon, V., Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. British journal of cancer 2006, 95 (1), S2-S6.
65. Ungerstedt, J.; Sowa, Y.; Xu, W.-S.; Shao, Y.; Dokmanovic, M.; Perez, G.; Ngo, L.; Holmgren, A.; Jiang, X.; Marks, P., Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proceedings of the National Academy of Sciences 2005, 102 (3), 673-678.
66. Bubna, A. K., Vorinostat—an overview. Indian journal of dermatology 2015, 60 (4), 419.
67. Ruefli, A. A.; Ausserlechner, M. J.; Bernhard, D.; Sutton, V. R.; Tainton, K. M.; Kofler, R.; Smyth, M. J.; Johnstone, R. W., The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proceedings of the National Academy of Sciences 2001, 98 (19), 10833-10838.
68. Tian, Q.; An, L.; Tian, Q.; Lin, J.; Yang, S., Ellagic acid-Fe@ BSA nanoparticles for endogenous H2S accelerated Fe (III)/Fe (II) conversion and photothermal synergistically enhanced chemodynamic therapy. Theranostics 2020, 10 (9), 4101.
69. Mao, Z.; Yang, X.; Mizutani, S.; Huang, Y.; Zhang, Z.; Shinmori, H.; Gao, K.; Yao, J., Hydrogen sulfide mediates tumor cell resistance to thioredoxin inhibitor. Frontiers in oncology 2020, 10, 252.
70. Szabo, C.; Coletta, C.; Chao, C.; Módis, K.; Szczesny, B.; Papapetropoulos, A.; Hellmich, M. R., Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proceedings of the National Academy of Sciences 2013, 110 (30), 12474-12479.
71. Wang, M.; Yan, J.; Cao, X.; Hua, P.; Li, Z., Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation. Biochemical Pharmacology 2020, 172, 113775.
72. Li, Y.; Chen, W.; Qi, Y.; Wang, S.; Li, L.; Li, W.; Xie, T.; Zhu, H.; Tang, Z.; Zhou, M., H2S‐scavenged and activated iron oxide‐hydroxide nanospindles for MRI‐guided photothermal therapy and ferroptosis in colon cancer. Small 2020, 16 (37), 2001356.
73. Liu, D.; Liu, M.; Wan, Y.; Zhou, X.; Yang, S.; An, L.; Huang, G.; Tian, Q., Remodeling endogenous H2S microenvironment in colon cancer to enhance chemodynamic therapy. Chemical Engineering Journal 2021, 422, 130098.
74. Richardson, D. R.; Ponka, P., The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochimica Et Biophysica Acta (BBA)-Reviews on Biomembranes 1997, 1331 (1), 1-40.
75. Daniels, T. R.; Delgado, T.; Helguera, G.; Penichet, M. L., The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clinical immunology 2006, 121 (2), 159-176.
76. Tortorella, S.; Karagiannis, T. C., Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. The Journal of membrane biology 2014, 247 (4), 291-307.
77. Gomme, P. T.; McCann, K. B.; Bertolini, J., Transferrin: structure, function and potential therapeutic actions. Drug discovery today 2005, 10 (4), 267-273.
78. Prost, A.; Menegaux, F.; Langlois, P.; Vidal, J.; Koulibaly, M.; Jost, J.; Duron, J.; Chigot, J.; Vayre, P.; Aurengo, A., Differential transferrin receptor density in human colorectal cancer: A potential probe for diagnosis and therapy. International journal of oncology 1998, 13 (4), 871-876.
79. Shinohara, H.; Fan, D.; Ozawa, S.; Yano, S.; Van Arsdell, M.; Viner, J.; Beers, R.; Pastan, I.; Fidler, I., Site-specific expression of transferrin receptor by human colon cancer cells directly correlates with eradication by antitransferrin recombinant immunotoxin. International journal of oncology 2000, 17 (4), 643-694.
80. Zhang, Z.; Ji, Y., Mesoporous manganese dioxide coated gold nanorods as a multiresponsive nanoplatform for drug delivery. Industrial & Engineering Chemistry Research 2019, 58 (8), 2991-2999.
81. He, T.; Qin, X.; Jiang, C.; Jiang, D.; Lei, S.; Lin, J.; Zhu, W.-G.; Qu, J.; Huang, P., Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 2020, 10 (6), 2453.
82. Taira, S.; Kitajima, K.; Katayanagi, H.; Ichiishi, E.; Ichiyanagi, Y., Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications. Science and technology of advanced materials 2009.
83. Roy, H. S.; Mollah, M. Y. A.; Islam, M.; Susan, M.; Hasan, A. B., Poly (vinyl alcohol)–MnO2 nanocomposite films as UV-shielding materials. Polymer Bulletin 2018, 75 (12), 5629-5643.
84. Soldatova, A. V.; Balakrishnan, G.; Oyerinde, O. F.; Romano, C. A.; Tebo, B. M.; Spiro, T. G., Biogenic and synthetic MnO2 nanoparticles: size and growth probed with absorption and raman spectroscopies and dynamic light scattering. Environmental science & technology 2019, 53 (8), 4185-4197.
85. Wu, J., The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. Journal of Personalized Medicine 2021, 11 (8), 771.
86. Hughes, M. N.; Centelles, M. N.; Moore, K. P., Making and working with hydrogen sulfide: the chemistry and generation of hydrogen sulfide in vitro and its measurement in vivo: a review. Free Radical Biology and Medicine 2009, 47 (10), 1346-1353.
87. Yoo, D.; Jupiter, R. C.; Pankey, E. A.; Reddy, V. G.; Edward, J. A.; Swan, K. W.; Peak, T. C.; Mostany, R.; Kadowitz, P. J., Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat. American Journal of Physiology-Heart and Circulatory Physiology 2015, 309 (4), H605-H614.
88. Hartle, M. D.; Pluth, M. D., A practical guide to working with H2S at the interface of chemistry and biology. Chemical society reviews 2016, 45 (22), 6108-6117.
89. Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R., Chemical biology of H2S signaling through persulfidation. Chemical reviews 2018, 118 (3), 1253-1337.
90. Wang, J.; Chen, J.; Liu, F.; Jia, M.; Zhang, Z.; Liu, M.; Jiang, L., Renewable WO3/Bi2O3 heterojunction for photoelectrochemical and visual dual-mode detection of hydrogen sulfide. Sensors and Actuators B: Chemical 2022, 369, 132274.
91. Yan, Y.; Zhou, Z.; Zhao, X.; Zhou, J., A controlled anion exchange strategy to synthesize core-shell β-bismuth oxide/bismuth sulfide hollow heterostructures with enhanced visible-light photocatalytic activity. Journal of colloid and interface science 2014, 435, 91-98.
92. Alyea, H. N., MnO2 as a catalyst for H2O2 decomposition. Dem. 646. Journal of Chemical Education 1969, 46 (7), A496.
93. Dolhun, J. J., Observations on manganese dioxide as a catalyst in the decomposition of hydrogen peroxide: a safer demonstration. Journal of Chemical Education 2014, 91 (5), 760-762.
94. Szabo, C., Gasotransmitters in cancer: from pathophysiology to experimental therapy. Nature reviews Drug discovery 2016, 15 (3), 185-203.
95. Hellmich, M. R.; Chao, C.; Módis, K.; Ding, Y.; Zatarain, J. R.; Thanki, K.; Maskey, M.; Druzhyna, N.; Untereiner, A. A.; Ahmad, A., Efficacy of novel aminooxyacetic acid prodrugs in colon cancer models: towards clinical translation of the cystathionine β-synthase inhibition concept. Biomolecules 2021, 11 (8), 1073.
96. Khan, N. H.; Wang, D.; Wang, W.; Shahid, M.; Khattak, S.; Ngowi, E. E.; Sarfraz, M.; Ji, X.-Y.; Zhang, C.-Y.; Wu, D.-D., Pharmacological inhibition of endogenous hydrogen sulfide attenuates breast cancer progression. Molecules 2022, 27 (13), 4049.
97. Yue, T.; Zuo, S.; Bu, D.; Zhu, J.; Chen, S.; Ma, Y.; Ma, J.; Guo, S.; Wen, L.; Zhang, X., Aminooxyacetic acid (AOAA) sensitizes colon cancer cells to oxaliplatin via exaggerating apoptosis induced by ROS. Journal of Cancer 2020, 11 (7), 1828.
98. Lamoine, S.; Cumenal, M.; Barriere, D. A.; Pereira, V.; Fereyrolles, M.; Prival, L.; Barbier, J.; Brasset, E.; Bertin, B.; Renaud, Y., The class I HDAC inhibitor, MS-275, prevents oxaliplatin-induced chronic neuropathy and potentiates its antiproliferative activity in mice. International journal of molecular sciences 2021, 23 (1), 98.
99. Zhu, P.; Martin, E.; Mengwasser, J.; Schlag, P.; Janssen, K.-P.; Göttlicher, M., Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer cell 2004, 5 (5), 455-463.