簡易檢索 / 詳目顯示

研究生: 簡碩德
Jian, Shuo-De
論文名稱: 以混合式薄膜提升有機場效電晶體之電性穩定性
Enhanced Stability of Blend-film Organic Field Effect Transistors
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 韓建中
陳銘洲
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 119
中文關鍵詞: 五環素雙噻吩蒽有機場效電晶體混合薄膜穩定性
外文關鍵詞: pentacene, antradithiophene, OFET, blend-film, stability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們嘗試透過混合的概念,將兩種在效能與穩定性上各有特色的p型半導體分子,五環素(pentacene,PTC)與雙噻吩蒽(antradithiophene ,ADT),以真空共蒸鍍的方式,製作各種以不同比例混合之有機薄膜,不同於合成新分子的方式,混合薄膜可調比例與省時的特點在未來發展和應用上具有相當的潛力。
    透過X光光電子發射光譜 (X-ray photoemission spectroscopy,XPS)分析其成分組成並再次確認樣品的混合比例,然後使用原子力顯微鏡(atomic force microscope,AFM) 分析各樣品薄膜之表面形貌與晶粒大小,再從X光繞射圖譜(X-ray diffraction,XRD)的結果去了解各個樣品的晶體結構與晶相好壞。並將其製成有機薄膜場效電晶體元件,分別量測各混合樣品之電性效能,並觀察元件在大氣中的穩定性表現。最後在透過氧化實驗實際了解有機薄膜的氧化情形與穩定性之關係。
    從X光繞射圖譜的結果中,我們發現有機薄膜中的兩種分子不是以相分離的方式各自成長,而是確實有混合在一起並產生了新的繞射特徵峰訊號,混合樣品的繞射特徵峰訊號位置會隨著混合比例改變。其中五環素薄膜和雙噻吩蒽薄膜的d-spacing分別為1.545 nm與1.415 nm,當五環素在樣品中的含量越多其d-spacing越大,分子結構中的c軸越直立於基材表面,分子間芳香環的重疊面積也隨之增加,有利於載子傳遞。AFM的結果中,發現混入少量雙噻吩蒽可以使樣品薄膜形成比五環素薄膜大的晶粒,成長模式也較容易往橫向方向發展,因此在電性效能與穩定性上皆有較好的表現。
    我們有系統的研究載子遷移率、啟動電壓與開關電流比等各項電性參數與混合薄膜之組成的關係,我們發現以90% PTC / 10% ADT的混合比例製作出兼具高電性效能與穩定性之有機場效電晶體元件,其元件之載子遷移率為0.37 cm2V-1s-1與五環素元件之載子遷移率0.44 cm2V-1s-1相似。至於混合薄膜元件之空氣穩定性,在大氣中經過約900次之操作穩定性量測與三個月的耐久穩定性量測,相較五環素元件之載子遷移率衰減至0.2 cm2V-1s-1與0.008 cm2V-1s-1,混合薄膜電晶體之載子遷移率還是可以分別維持在0.3 cm2V-1s-1與0.1 cm2V-1s-1左右。最後我們從將薄膜樣品放置於氧氣環境下觀察其氧化程度的氧化實驗結果中也可以清楚的發現,以少比率雙噻吩蒽所製成之混合式有機薄膜元件確實有著較不容易被氧氣氧化的穩定性。


    In this study, we report on the formation of blend-film organic field effect transistors of two p-type semiconductors of pentacene (PTC) and antradithiophene (ADT) that have similar structure and carrier transport properties.
    We co-deposited ADT/PTC blend films of various mixing ratio and used X-ray photoemission spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD) to characterize the thin-film composition, morphology, grain size, and crystallinity. Afterwards, we fabricated blend-film OFETs, measured their electrical properties, and evaluated their air stability. And finally, we investigated the relationship between the degree of oxidation and air stability of the blend films.
    From the XRD patterns, we concluded that the ADT/PTC blend films were of mixing origin not phase separated, as evidenced by the formation of the new diffraction peaks. We also found that the higher PTC proportion in the blend film would form a structure with larger d-spacing. This fact might enhance the aromatic ring overlap area and increased the intermolecular hole transport. In AFM image data, we found that the blend films with the small percentage of ADT had the larger grain size than the PTC thin film, suggesting a larger lateral growth.
    For the blend-film OFETs, we found that the device of a mixing ratio of the 90%PTC had the hole transport mobility of 0.37 cm2V-1s-1, comparable to the PTC device of 0.44. The device of a mixing ratio of the 90%PTC was more stable than the PTC device in ambient condition. After 900 times cycle test, or 3 months shelf-life test, the mobility of 0.3 cm2V-1s-1 and 0.1 cm2V-1s-1 was still maintained, respectively. In comparison, the PTC device dropped to 0.2 cm2V-1s-1 and 0.008 cm2V-1s-1 after the same treatment. In the oxidation experiment results, we also found that the blend films with small percentage of ADT were less easily oxidized than PTC thin film.

    第一章 序論 1 1-1 前言 1 1-2 有機半導體材料及其穩定性研究 2 1-2-1 常見有機半導體材料 3 1-2-2 環境分子對五環素薄膜電晶體之影響 6 1-2-3 提升有機半導體材料空氣穩定性的策略 7 1-3 混合式有機薄膜與元件之文獻回顧 9 1-4 研究動機與目的 14 第二章 實驗技術背景及原理 16 2-1 同步輻射光源(synchrotron radiation source) 16 2-2 超高真空系統 19 2-3 原子力顯微鏡(Atomic Force Microscope,AFM)原理 22 2-4 X光光電子發射能譜 (X-ray Photoemission Spectroscopy,XPS) 24 2-5 X光繞射光譜原理 29 2-6 有機薄膜場效電晶體 31 2-6-1 有機薄膜場效電晶體的工作原理 31 2-6-2 有機薄膜場效電晶體電流與電壓關係 35 第三章 實驗藥品、儀器與實驗步驟 39 3-1 實驗藥品 39 3-2 實驗儀器 41 3-3 基材前置處理 43 3-4 自組裝薄膜成長 44 3-5 蒸鍍方位與速率調控 46 3-5-1混合式有機薄膜之混合比例與蒸鍍調控 46 3-5-2金電極之蒸鍍調控與規格 48 3-6 有機薄膜場效電晶體製作流程 49 3-7 場效電晶體之電性量測 52 3-8 超高真空系統表面分析量測 54 3-9 原子力顯微鏡量測 55 3-10 氧化實驗之實驗裝置與程序 56 第四章 實驗結果與討論 59 4-1 實驗樣品之混合比例與XPS定量分析 59 4-2 混合式有機薄膜之AFM量測 63 4-3 混合式有機薄膜之X光繞射量測 67 4-4 有機混合薄膜電晶體之電性表現 73 4-5 混合有機薄膜電晶體之穩定性表現 79 4-6 氧化實驗之量測與討論 83 4-6-1 五環素薄膜之氧化實驗 84 4-6-2 雙噻吩蒽薄膜之氧化實驗 90 4-6-3 混合薄膜之氧化實驗 95 4-7 以X光能譜探討五環素薄膜氧化過程 99 4-7-1 以XPS光譜分析五環素之氧化形式 99 4-7-2 氧化實驗與五環素有機薄膜之NEXAFS光譜量測 102 4-7-3 探討氧在五環素薄膜樣品中之存在模式 107 4-8 綜合討論 110 第五章 結論 114 第六章 參考資料 116

    Sun, Y. M.; Liu, Y. Q.; Zhu, D. B. J. Mater. Chem. 2005, 15, 53.
    2. Murphy, A. R.; Frechet, J. M. J. Chem. Rev. 2007, 107, 1066.
    3. Anthony, J. E. Angew. Chem.-Int. Edit. 2008, 47, 452.
    4. Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Angew. Chem.-Int. Edit. 2008, 47, 4070.
    5. Yamashita, Y. Sci. Technol. Adv. Mater. 2009, 10, 5023.
    6. Pope, M.; Swenberg Electronic Processes in Organic Crystals and Polymers; 2nd ed.; Oxford University Press, 1999.
    7. Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
    8. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99.
    9. Klauk, H.; Halik, M.; Zschieschang, U.; Eder, F.; Schmid, G.; Dehm, C. Appl. Phys. Lett. 2003, 82, 4175.
    10. Facchetti, A. Mater. Today 2007, 10, 28.
    11. Haddon, R. C.; Perel, A. S.; Morris, R. C.; Palstra, T. T. M.; Hebard, A. F.; Fleming, R. M. Appl. Phys. Lett. 1995, 67, 121.
    12. Kobayashi, S.; Takenobu, T.; Mori, S.; Fujiwara, A.; Iwasa, Y. Appl. Phys. Lett. 2003, 82, 4581.
    13. Sakamoto, Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.; Tokito, S. J. Am. Chem. Soc. 2004, 126, 8138.
    14. Qiu, Y.; Hu, Y. C.; Dong, G. F.; Wang, L. D.; Xie, J. F.; Ma, Y. N. Appl. Phys. Lett. 2003, 83, 1644.
    15. Northrup, J. E.; Chabinyc, M. L. Phys. Rev. B 2003, 68, 041202.
    16. Yang, H.; Yang, L.; Ling, M.-M.; Lastella, S.; Gandhi, D. D.; Ramanath, G.; Bao, Z.; Ryu, C. Y. J. Phys. Chem. C 2008, 112, 16161.
    17. Okamoto, H.; Kawasaki, N.; Kaji, Y.; Kubozono, Y.; Fujiwara, A.; Yamaji, M. J. Am. Chem. Soc. 2008, 130, 10470.
    18. Takimiya, K.; Yamamoto, T.; Ebata, H.; Izawa, T. Sci. Technol. Adv. Mater. 2007, 8, 273.
    19. Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E. Adv. Mater. 2003, 15, 2009.
    20. Tang, M. L.; Okamoto, T.; Bao, Z. N. J. Am. Chem. Soc. 2006, 128, 16002.
    21. Youn, J.; Chen, M. C.; Liang, Y. J.; Huang, H.; Ortiz, R. P.; Kim, C.; Stern, C.; Hu, T. S.; Chen, L. H.; Yan, J. Y.; Facchetti, A.; Marks, T. J. Chem. Mater. 2010, 22, 5031.
    22. Horowitz, G.; Peng, X. Z.; Fichou, D.; Garnier, F. Synth. Met. 1992, 51, 419.
    23. Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Appl. Phys. Lett. 1996, 69, 3066.
    24. Vogel, J. O.; Salzmann, I.; Opitz, R.; Duhm, S.; Nickel, B.; Rabe, J. P.; Koch, N. J. Phys. Chem. B 2007, 111, 14097.
    25. Vogel, J. O.; Salzmann, I.; Duhm, S.; Oehzelt, M.; Rabe, J. P.; Koch, N. J. Mater. Chem. 2010, 20, 4055.
    26. Cosseddu, P.; Vogel, J. O.; Fraboni, B.; Rabe, J. P.; Koch, N.; Bonfiglio, A. Adv. Mater. 2009, 21, 344.
    27. Zhang, J.; Wang, H.; Yan, X. J.; Wang, J.; Shi, J. W.; Yan, D. H. Adv. Mater. 2005, 17, 1191.
    28. Northrup, J. E.; Chabinyc, M. L. Phys. Rev. B 2003, 68.
    29. Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. J. Am. Chem. Soc. 1998, 120, 664.
    30. Kwon, O.; Coropceanu, V.; Gruhn, N. E.; Durivage, J. C.; Laquindanum, J. G.; Katz, H. E.; Cornil, J.; Bredas, J. L. J. Chem. Phys. 2004, 120, 8186.
    31. 沈鼎昌 神奇的光 ─ 同步輻射; 牛頓出版股份有限公司, 1999.
    32. 汪建民 材料分析; 中國材料科學學會: 新竹縣, 2009.
    33. Group, D. I. V. M. Scanning Probe Microscopy Traning Notebook Version 3.0, 2003.
    34. Meyer, G.; Amer, N. M. Appl. Phys. Lett. 1988, 53, 1045.
    35. Vickerman, J. T. Surface Analysis - The Principal Techniques John Wiley & Sons: New York, 1997.
    36. Crist, B. V.; XPS_PHYSICS, Ed. 2010; Vol. 1,113 × 835 pixels.
    37. Horowitz, G. Adv. Mater. 1998, 10, 365.
    38. Coropceanu, V.; Cornil, J.; da Silva, D. A.; Olivier, Y.; Silbey, R.; Bredas, J. L. Chem. Rev. 2007, 107, 926.
    39. Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.
    40. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436.
    41. Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
    42. Silberzan, P.; Leger, L.; Ausserre, D.; Benattar, J. J. Langmuir 1991, 7, 1647.
    43. Pernstich, K. P.; Haas, S.; Oberhoff, D.; Goldmann, C.; Gundlach, D. J.; Batlogg, B.; Rashid, A. N.; Schitter, G. J. Appl. Phys. 2004, 96, 6431.
    44. Vegard, L. Z. Phys. A: Hadrons Nucl. 1921, 5, 17.
    45. Denton, A. R.; Ashcroft, N. W. Phys. Rev. A 1991, 43, 3161.
    46. Knipp, D.; Street, R. A.; Volkel, A.; Ho, J. J. Appl. Phys. 2003, 93, 347.
    47. Kitamura, M.; Arakawa, Y. J. Phys.-Condes. Matter 2008, 20, 184011.
    48. Di, C. A.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Sun, X. N.; Zheng, J.; Wen, Y. G.; Wang, Y.; Wu, W. P.; Zhu, D. B. Phys. Chem. Chem. Phys. 2009, 11, 7268.
    49. Briggs, D.; Seah, M. P. Pracical surface analysis; John Wiley & Sons: Teddington, UK, 1994.
    50. Northrop, B. H.; Houk, K. N.; Maliakal, A. Photochem. Photobiol. Sci. 2008, 7, 1463.
    51. Chen, M. C.; Kim, C.; Chen, S. Y.; Chiang, Y. J.; Chung, M. C.; Facchetti, A.; Marks, T. J. J. Mater. Chem. 2008, 18, 1029.
    52. Seo, J. H.; Pedersen, T. M.; Chang, G. S.; Moewes, A.; Yoo, K. H.; Cho, S. J.; Whang, C. N. J. Phys. Chem. B 2007, 111, 9513.
    53. Parisse, P.; Picozzi, S.; Ottaviano, L. Org. Electron. 2007, 8, 498.
    54. Kafer, D.; Ruppel, L.; Witte, G. Phys. Rev. B 2007, 75, 085309
    55. Satta, M.; Iacobucci, S.; Larciprete, R. Phys. Rev. B 2007, 75, 155401.
    56. Tsetseris, L.; Pantelides, S. T. Phys. Rev. B 2007, 75, 153202.
    57. Klauk, H.; Zschieschang, U.; Weitz, R. T.; Meng, H.; Sun, T.; Nunes, G.; Keys, D. E.; Fincher, C. R.; Xiang, Z. Adv. Mater. 2007, 19, 3882.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE