研究生: |
彭宇晨 Peng, Yu-Chen |
---|---|
論文名稱: |
布萊克-休斯美式期權方程的高階緊緻方法 High Order Compact Methods for Black-Scholes Equation of American Options |
指導教授: |
王偉成
Wang, Wei-Cheng |
口試委員: |
鄭志豪
Teh, Jyh-Haur 韓傳祥 Han, Chuan-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 33 |
中文關鍵詞: | 布萊克-休斯方程 、美式買權 、自由邊界問題 、高階緊緻方法 、漸近展開 |
外文關鍵詞: | Black-Scholes equation, American call option, free boundary problem, high order compact method, asymptotic expansion |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們將介紹布萊克-休斯方程(美式買權)的高階緊緻方法。我們先計算自由邊界上的函數跳躍條件。藉由跳躍條件,我們可以更精準地找出自由邊界的位置。我們首先介紹二階收歛的方法,然後推廣至高階緊緻的方法。
In this thesis, we introduce high order compact methods for the Black-Scholes equation of American call options. We compute some jump conditions depend on the free boundary. By applying the jump conditions, we can locate the free boundary more precisely. At first we would introduce a second order method, and then attempt to a higher order method with compact scheme.
[1] H. Han and X. Wu, A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal., 41 (2003), pp. 2081-2095.
[2] M. Ehrhardt and R. E. Mickens, A fast, stable and accurate numerical method for the Black-Scholes equation of American options, International J. of Theoretical and Applied Finance, 11 (2008), pp. 471-501.
[3] P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. Scientic Computing, 23 (2002), pp. 2095-2122.
[4] P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, UK, 1993.
[5] G. Alobaidi, American options and their strategies, The University of Western Ontario, London, 2000.
[6] G. Alobaidi and R. Mallier, Asymptotic analysis of American call options, IJMMS 27 (2001), pp. 177-188.
[7] J. D. Evans, R. Kuske, and Joseph B. Keller, American options on assets with dividends near expiry, Math. Finance, 12 (2002), pp. 219-237.
[8] S. Kazemi, M. Dehghan, and A. F. Bastani, Asymptotic expansion of solutions to the Black-Scholes equation arising from American option pricing near the expiry, Journal of Computational and Applied Mathematics, 311 (2017), pp. 11-37.
[9] J. Goodman and D. N. Ostrov, On the early exercise boundary of the American put option, SIAM J. Appl. Math. 62 (2002), pp. 1823-1835.
[10] X. Chen and J. Chadam, Mathematical analysis of the optimal exercise boundary for American put options, SIAM J. Math. Anal. 38 (2007), pp. 1613-1641.
[11] L. Wu, Y. K. Kwok, A front-xing nite dierence method for the valuation of American options, J. Financial Eng. 6 (2)(1997), pp. 83-97
[12] D. Y. Tangman, A. Gopaul, and M. Bhuruth, Numerical pricing of options using high-order compact nite dierence schemes, Journal of Computational and Applied Mathematics, 218 (2008), pp. 270-280.
[13] Merton, R. C. (1973): Theory of Rational Option Pricing, Bell J. Econ. Mgt. Sci., 4, pp.141-183
[14] Jacka, S. D. (1991): Option Stopping and the American Put, Math Finance, 1, pp.1-14