簡易檢索 / 詳目顯示

研究生: 趙永晟
Chao, Yung-Cheng
論文名稱: 非均質多頻道感知無線電網路傳輸量最大化之最佳感測與通道指派研究
Optimal Sensing and Channel Assignment for Throughput Maximization in Inhomogeneous Multi-channel Cognitive Radio Networks
指導教授: 蔡育仁
Tsai, Yuh-Ren
口試委員: 吳卓諭
洪樂文
蔡育仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 45
中文關鍵詞: 感知網路頻譜感測傳輸量最大化感測傳輸量權衡通道指派
外文關鍵詞: cognitive radio, spectrum sensing, throughput maximization, sensing-throughput tradeoff, channel assignment
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感知網路近年來在動態頻譜感知與使用是一個熱門的研究議題。為了保護主要使用者的傳輸,次要使用者在使用主要使用者的頻寬前,必須先偵測其頻寬是否已被佔據以避免發生碰撞。偵測時間的長短隨著要求達到感測過後未被佔據的授權頻道數目不同而異,而系統傳輸量會被傳送時間和可用的傳輸頻道數目兩者影響,要求的傳輸頻道數目越多,感測的頻道數目就需要越多,傳輸時間也隨之越短。本論文研究目標在於找到一個最佳要求的感測過後未被占據的授權頻道數目使得次用使用者的系統傳輸量得到最大化。當環境為多個次要使用者時,我們提出一個分配感測過後未被佔據的授權頻道給所有次要使用者的演算法。
    在本論文中,我們也研究在多頻道感知網路系統中,藉由讓不同次要使用者不同時開始傳送訊號來最大化系統的傳輸量。系統一旦感測到一個未被占據的授權頻道後就先讓一個次用使用者進入傳送階段藉此提早開始累積整個系統的傳輸量,故決定次要使用者進入傳送階段的順序是個最佳化的議題。我們也比較以往次用使用者同時開始傳輸的方法和本篇所提出允許讓不同次要使用者不同時開始傳送的方法。最後,模擬結果不僅顯示提出方法的可行性,同時指出,不同參數設定下,最佳使用者傳送順序也將有所不同。


    In a cognitive radio (CR) network, the secondary users (SUs) are allowed to utilize the primary channels (PCs) when they are unoccupied. To avoid collision with the primary users, SUs must sense the PCs before transmitting their signals. Conceptually, the number of available channels sensed by the CR network depends on the length of sensing duration. The tradeoff between the length of sensing duration and the detection performance will affect the throughput of the CR network. In this work, we aim to obtain an optimal number of available PCs in order to maximize the overall system throughput of the SU’s network. In a multi-channel multi-user environment, we also propose a channel allocation algorithm to assign the available channels to inhomogeneous SUs.
    In this thesis, we also study the problem of throughput maximization for a multi-channel CR network allowing SUs starting their transmissions non-simultaneously. Since the network throughput will be calculated earlier if SUs can transmit signal once a PC is sensed to be available, the transmission order of SUs is an optimization factor. We discuss and compare the simultaneous transmission scheme with the proposed non-simultaneous transmission schemes for throughput maximization in inhomogeneous multi-channel CR networks. Finally, the simulation results not only show that the proposed scheme is feasible but also indicate the transmission order of SUs will be different according to various parameters.

    Abstract Contents Chapter 1 Introduction 1.1 Introduction to Cognitive Radio Network 1.2 Literature Review Chapter 2 Throughput Maximization in Single SU Multi-channel Fading Environment 2.1 System Model 2.2 Channel Model 2.3 Problem Statement and Formulation 2.3.1 Single SU Single PC Environment 2.3.2 Single SU Multiple PCs Environment 2.4 Sensing Throughput Analysis and Tradeoff Chapter 3 Throughput Maximization in Multiple SUs Multi-channel Fading Environment 3.1 System Model 3.2 Channel Model 3.3 Problem Statement and Formulation 3.3.1 Multiple SUs Single PC Environment 3.3.2 Multiple SUs Multiple PCs Environment 3.4 Sensing Throughput Analysis and Tradeoff in ST Scheme 3.5 Dynamic Spectrum Sensing Chapter 4 Non-Simultaneous Transmission Scheme for Throughput Maximization 4.1 Problem Statement and Formulation 4.2 Sensing Throughput Analysis and Tradeoff in NST Scheme Chapter 5 Results & Discussions 5.1 Simulation Environment 5.2 Simulation and Analytical Results for Single SU Case 5.3 Simulation and Analytical Results for Multiple SUs Case Chapter 6 Conclusions Bibliography

    [1] G. Staple and K. Werbach, “The end of spectrum scarcity," IEEE Spectrum, vol. 41, pp. 48-52, Mar. 2004.
    [2] Federal Communications Commission, “Spectrum policy task force report, FCC 02-155," Nov. 2002.
    [3] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio—part I: two user networks," IEEE Trans. Wireless Comm., vol. 6, no. 6, pp. 2204-2213, June 2007.
    [4] G. Ganesan and Y. Li, “Cooperative spectrum sensing in cognitive radio—part II: multiuser networks," IEEE Trans. Wireless Comm., vol. 6, no. 6, pp. 2214-2222, June 2007.
    [5] M. Gandetto and C. Regazzoni, “Spectrum sensing: a distributed approach for cognitive terminals," IEEE J. Sel. Areas Comm., vol. 25, no. 3, pp. 546-557, Apr. 2007.
    [6] S. M. Kay, Fundamentals of Statistical Signal Processing, Volume 2: Detection Theory. Prentice Hall, 1998.
    [7] S. Gong, P. Wang, W. Liu and W. Yuan, “Maximize Secondary User Throughput via Optimal Sensing in Multi-channel Cognitive Radio Networks”, Proc. IEEE Globecom'10, Miami FL USA, pp. 6-10 Dec. 2010.
    [8] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Comm., vol. 23, no. 2, pp. 201–220, Feb. 2005.
    [9] H. Kim and K. G. Shin, “Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks,” IEEE Trans. Mobile Computing, vol. 7, no. 5, pp. 533–545, May 2008.
    [10] W.-Y. Lee and I. F. Akyildiz, “Optimal spectrum sensing framework for cognitive radio networks,” IEEE Trans. Wireless Comm., vol. 7, no. 10, pp. 3845–3857, Oct. 2008.
    [11] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for opportunistic spectrum access in ad hoc network: A POMDP framework,” IEEE J. Sel. Areas Comm., vol. 25, no. 3, pp. 589–600, Apr. 2007.
    [12] J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management,” IEEE J. Sel. Areas Comm., vol. 26, no. 1, pp. 106–117, Jan. 2008.
    [13] Z. Quan, S. Cui, and A. H. Sayed, “Optimal multiband joint detection for spectrum sensing in cognitive radio networks,” IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1128–1140, Mar. 2009.
    [14] Y.-C. Liang, Y. Zeng, E. Peh, and A. T. Hoang, “Sensing-throughput tradeoff for cognitive radio networks,” IEEE Trans. Wireless Comm., vol. 7, no. 4, pp. 1326–1337, Apr. 2008.
    [15] H. Su and X. Zhang, “Cross-layer based opportunistic MAC protocols for QoS provisioning over cognitive radio wireless networks,” IEEE J. Sel. Areas Comm., vol. 26, no. 1, pp. 118–129, Jan. 2008.
    [16] H. Jiang, L. Lai, R. Fan, and H. V. Poor, “Optimal selection of channel sensing order in cognitive radio" IEEE Trans. Wireless Comm., vol. 8, no. 1, pp. 297-307, Jan. 2009.
    [17] L. Lai, H. El Gamal, H. Jiang, and H. V. Poor, “Cognitive medium access: exploration, exploitation and competition" IEEE Transactions on Mobile Computing, vol. 10, no. 2, pp. 239-253, Feb. 2011.
    [18] R. Fan and H. Jiang, “Channel sensing-order setting in cognitive radio networks: a two-user case" IEEE Trans. Veh. Technol., vol. 58, no. 9, pp. 4997-5008, Nov. 2009.
    [19] X. Kang, Y.-C. Liang, H. K. Garg, and L. Zhang, “Sensing-based spectrum sharing in cognitive radio networks" IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 4649-4654, Oct. 2009.
    [20] R. Fan and H. Jiang “Optimal Multi-Channel Cooperative Sensing in Cognitive Radio Networks” IEEE Trans. Wireless Comm., vol. 9, no.3, pp.1128 – 1138, Mar. 2010.
    [21] S. Akin and M.-C. Gursoy, “QoS Analysis of Cognitive Radio Channels with Perfect CSI at both Receiver and Transmitter” in Proc. WCNC, 2010, pp.1-6.
    [22] Y. Zou, Y.-D. Yao, B. Zheng , “Outage Probability Analysis of Cognitive Transmissions: Impact of Spectrum Sensing Overhead” IEEE Trans. Wireless Comm., vol. 9, no. 8, pp. 2676 - 2688, Aug. 2010.
    [23] T.-W. Ban, W. Choi, B.-C. Jung, and D.-K. Sung, “Multi-user diversity in a spectrum sharing system'' IEEE Trans. Wireless Comm., vol. 8, no. 1, pp. 102-106, Jan. 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE