研究生: |
陸奇達 Chi-Ta Lu |
---|---|
論文名稱: |
影像處理技術為基礎之空間性缺陷圖樣辨識演算法 Defect Spatial Pattern Recognition Algorithm Based on Image Processing Techniques |
指導教授: |
陳飛龍博士
Fei-Long Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | 半導體 、良率 、缺陷 、影像處理技術 |
外文關鍵詞: | Semiconductor, Yield, Defect, Image processing techniques |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體的製造需經過許多繁複的程序以及昂貴的原物料才能完成,若沒有及時解決良率低落的問題,會造成半導體公司嚴重的損失,但要從複雜的製造程序中找到原因是非常不容易的,因此為了縮短診斷製程問題的時間並有效的提昇半導體生產良率,半導體公司需要一套分析方法來找到造成良率低落的原因。
製程的問題造成良率低落,而缺陷圖上的空間性缺陷圖樣和製程的問題有著密不可分的關係,因此空間性缺陷圖樣提供工程師找到造成良率低落的重要線索,本研究欲發展一套以影像處理技術為基礎的空間性缺陷圖樣辨識演算法,研究的目的包括 (1)辨識直線型、弧型、半環型、環型、邊緣型、重複型與區域型缺陷圖樣,(2)發展高執行速度的辨識方法,(3)同時處理位於缺陷圖上不同位置的缺陷圖樣,以及(4)缺陷分類準則標準化。辨識演算法的流程包括偵測重複型缺陷、缺陷雜訊過濾、缺陷分群、特徵擷取以及模糊推論系統,本研究亦建立知識庫存放資深工程師辨識缺陷圖樣的準則,做為辨識缺陷的標準。
研究中收集了某一半導體中實際的缺陷資料,並建立系統以驗證辨識演法之可行性,以實例驗證結果而言,本研究提出的演算法可以正確的辨識出缺陷空間群聚圖樣,相較於人工辨識,高執行速度的優點可縮短缺陷辨識的時間。
Semiconductor manufacturing is a large scaled process with high complexity. It is a very difficult task to identify the cause of product defects occurred during the manufacturing processes. In order to meet the expectation of a high yield target, quick identification of root cause becomes a vital issue. This means manufacturers must develop a method that enables them to improve yield as fast as they can after production starts. Spatial patterns appearing on the defect map contain information about defect shape and size, and might reveal the root causes of the occurred defects. As a result, this research intends to develop a defect spatial pattern recognition algorithm based on image processing techniques. The objectives of this research are (1) to accurately identify defect spatial patterns, including line type, curve type, half-ring type, ring type, edged type, repeating type and zone type, (2) to develop a recognizing procedure with high processing speed, (3) to deal with multiple defect patterns on a wafer simultaneously regardless of the wafer size, and (4) to standardize the defect classification. The recognition procedure includes the detection of repeating defects, defects denoising, defects clustering, feature extracting, and the fuzzy inference system. A knowledge base will also be built up based on the expertise accumulated from the regular recognition process.
The developed methodology is verified with industrial data from a famous semiconductor company. The experimental results demonstrate that the proposed methodology can not only meet a high accuracy target but also save much time on dealing with the defect classification comparing to human operations.
Agrawal, R., Gehrke, J., Gunopulos, D. and Raghavan P., “Automatic subspace clustering of high dimensional data for data mining applications,” Proceedings of the ACM SIGMOD international conference on Management of data, 27(2), 94-105(1998).
Ankerst, M., Markus, M. B., Kriegel, H. P. and Sander, J., “OPTICS: Ordering points to identity the clustering structure,” Proceedings of the 1999 ACM SIGMOD international conference on Management of data, 28(2), 49-60(1999).
Badih, E. K., Ghatalia, A. and Satya, A. V. S., “Yield management in microelectronic manufacturing,” Electronic Components and Technology Conference, 58-63(1995).
Breaux, L. and Singh, B., “Automatic defect classification system for patterned semiconductor wafers,” IEEE/UCS/SEMI International Symposium on Semiconductor Manufacturing, 68–73(1995).
Chen, F. L. and Liu, S. F., “A neural-network approach to recognize defect spatial pattern in semiconductor manufacturing,” IEEE Transactions on Semiconductor Manufacturing, 13(3), 366-373(2000).
Chen, W. C., Tseng, S. S., Hsiao, K. R., Liu, C. C., “A data mining projects for solving low-yield situations of semiconductor manufacturing,” Advanced Semiconductor Manufacturing Conference, 129–134(2004).
Chuai-aree S., Lursinsap C., Sophatsathit P., and Siripant S., “Fuzzy C-Mean: A Statistical Feature Classification of Text and Image Segmentation Method,” International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(6), 661-671(2001).
Chung, S. L. and Jeng, M., “Fabulous MESs and C/Cs: an overview of semiconductor fab automation systems,” IEEE Robotics & Automation Magazine, 11(1), 8-18(2004).
Cunningham, S.P. and MacKinnon, S., “Statistical methods for visual defect metrology,” IEEE Transactions on Semiconductor Manufacturing, 11(1), 48-53(1998).
Ernest, L. H., “Computer image processing and recognition”, 儒林圖書公限公司, 1979.
Ester, M., Kriegel, H. P., Sander, J. and Xu, X., “A density-based algorithm for discovering clusters in large spatial databases,” In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining, 226-331(1996).
Fukushima, T., Narazaki, H. and Konishi, M., “A method of feature extraction from an image for quality analysis,” IEEE International Conference on Systems, Man, and Cybernetics, 2, 952-957(1999).
Goel, H. and Dance, D., “Yield enhancement challenges for 90 nm and beyond,” Advanced Semiconductor Manufacturing Conference, 262-265(2003).
Gonzalez, R. C., Woods, R. E., Rafael C. G. and Richard E. W., Digital image processing, Prentice Hall, 2002.
Guha, S., Rastogi, R. and Shim, K., “Cure: an efficient clustering algorithm for large databases,” Information Systems. 26(1): 35-58(2001).
Han J. and Kamber, M., Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2001.
Hsieh, H. W. and Chen, F. L., “Recognition of defect spatial patterns in semiconductor fabrication,” International Journal of Production Research, 42(19), 4153-4172(2004).
Huang, C. J., Wu, C. F. and Wang, C. C., “Image processing techniques for wafer defect cluster identification,” IEEE Design & Test of Computers, 19(2), 44- 48(2002).
Imai, K. and Kaga, T., “Highly accurate extraction of 3 critical yield loss components (gross, repeated, and random) by FIMER,” Semiconductor Manufacturing Conference Proceedings, 383-386(1999).
Iwata, H., Ono, M., Konishi, J., Isogai, S. and Furutani, T., “In-line wafer inspection data warehouse for automated defect limited yield analysis,” Advanced Semiconductor Manufacturing Conference, 124-129(2000).
Liu, S. F., Chen, F. L. and Lu, W. B., “Wafer bin map recognition using a neural network approach,” International Journal of Production Research, 40(10), 2207-2223.
Marc, L., Maty, M. and Dan, Y., “DCS-1: a fuzzy logic expert system for automatic defect classification of semiconductor wafer defects,” IEEE World Congress on Computational Intelligence, 2100–2106(1994).
Marques, A. B., Taranto, G. N. and Falcao, D.M., “A knowledge-based system for supervision and control of regional voltage profile and security,” IEEE Transactions on Power Systems, 20(1), 400-407(2005).
Miguelanez, E., Zalzala, A.M.S. and Tabor, P., “Evolving neural networks using swarm intelligence for binmap classification,” Congress on Evolutionary Computation, 978–985(2004).
Miguelanez, E., Zalzala, A.M.S. and Tabor, P., “Device independent wafermap analysis: DIWA,” Congress on Evolutionary Computation, 8–12(2003).
Mital, D.P. and Teoh, E.K., “Computer based wafer inspection system,” International Conference on Industrial Electronics, Control and Instrumentation, 2497-2503(1991).
Nemoto, K., Ikeda, S., Yoshida, O., Sasabe, J. and Su, H., “A statistical method for reducing systematic defects in the initial stages of production,” Advanced Semiconductor Manufacturing Conference, 77–81(2002).
Neyer, T. and Hafner, M., “Yield learning using the defect reticle method,” Advanced Semiconductor Manufacturing Conference, 110-114(2004).
Ono, M., Nemoto, K. and Ariga, M., “An effective method for yield enhancement using zonal defect recognition,” Semiconductor Manufacturing Conference Proceedings, E25-E28(1997).
Ross, T., J., Fuzzy Logic with Engineering Applications, New York: McGraw-Hill, 1995.
Segal, J., Sagatelian, A., Hodgkins, B., Chu. B., Singh, T. and Berman, H., “Critical area based yield prediction using in-line defect classification information [DRAMs],” Advanced Semiconductor Manufacturing Conference, 83-88(2000).
Shapiro, A.F., “Fuzzy logic in assurance”, Insurance: Mathematics and Economics, 35, 399-424(2004).
Shin, C. K. and Park, S. C., “A machine learning approach to yield management in semiconductor manufacturing,” International Journal of Production Research, 17(38), 4261-4271(2000).
Su, C. T.; Yang, T. and Ke, C. M., “A neural-network approach for semiconductor wafer post-sawing inspection,” IEEE Transactions on Semiconductor Manufacturing, 15(2), 260–266(2002).
William, B. G., Digital image processing, second edition, Van Nostrand Reinhold, 1989.
Zhang, J. M., Lin, R. M. and Wang, M. J., “The development of an automatic post-sawing inspection system using computer vision techniques,” Computers in Industry, 40(1), 51-60(1999).
Zhang, T., Ramakrishnan, R. and Livny, M., “Birch: An efficient data clustering method for very large database,” Proceedings of the ACM SIGMOD international conference on Management of data, 25(2), 103-114(1996).