研究生: |
許兼貴 CHIEN-KUI HSU |
---|---|
論文名稱: |
深紫外光光罩抗反射技術及次100奈米世代電子束直寫阻劑特性研究 Study of Anti-Reflective Coatings for Deep Ultraviolet Photomask and Photoresists for Sub-100 nm Generation Electron Beam Direct Writing Applications |
指導教授: |
朱鐵吉 博士
Dr. Tieh-Chi Chu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 抗反射技術 、光罩 、電子束直寫 |
外文關鍵詞: | Fabry-Perot, photomask, Deep UV lithography, DUV CARs |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中有兩個主要的部分。一個是針對在深紫外光波段,光罩的抗反射層技術;另一個是對深紫外光的光阻,運用在電子束直寫系統時,其特性的研究。
在光罩抗反射層部分,我們針對在深紫外光的波段,成功的設計出,一個以Fabry-Perot結構為基礎的二元式光罩(binary mask)抗反射層結構。這抗反射層結構是由鉻(Cr) / 二氧化矽(oxide) / 鉻(Cr)堆疊所組成的。藉著調整這三層結構,在波長248 nm及193 nm的反射率,皆能小於2%。實驗結果跟模擬方面也非常的吻合。在這三層的Fabry-Perot結構中,頂部的金屬鉻層,厚度必須大於100 nm,才能對光達到理想的吸收效果。藉著控制中間二氧化矽層的厚度,我們可以使最低的反射率值,落在所要的波長上。至於底部的金屬鉻層,厚度必須有最佳的控制,使光仍能穿透而進入Fabry-Perot的結構,造成多光干涉的效果。一般來說,光罩層應該有良好的導電性,為著減少在電子束直寫的過程中,電子累積效應所造成的影響。在Fabry-Perot的結構中,頂部的金屬層,將可以避免因 電子束直寫所造成的電子累積效應。
在電子束直寫阻劑特性研究的部分,一正型的深紫外光化學放大性阻劑(Shipley® UV86),在電子束微影製程、蝕刻製程以及高溫硬烤後的熱流現象等特性,都已經做過相關的評估。我們發現UV86對電子束是一個高敏感的阻劑,對比度高達16。它對電子束微影最佳的軟烤、曝後烤條件,在加速電壓40kV電子束劑量11~13.5μC/cm2下,分別為130℃/60sec、135℃/90sec。藉著不同的硬烤溫度,洞寬200 nm~25 nm的光阻圖形,皆能成功的作出來,且其縮洞後上端的圖形較圓滑(round),這將有利於後續蝕刻和離子佈植的製程。軟烤溫度的升高,可使光阻在硬烤過程中,縮小的比例有減緩的趨勢,可藉此對洞寬的大小作較佳的控制。此外,UV86對熱氧化矽、多晶矽及金屬鉻,分別在氣體CHF3 / CF4, Cl2 / O2, and Cl2 / O2的蝕刻選擇比,我們也已作過測試。
There are two major parts in this thesis. One is establishing the anti-reflective coatings technique for using in deep ultraviolet photomask. The other is to investigate the behavior of DUV photoresists for applying in electron beam direct writing system.
In the development of the anti-reflective coating techniques for photomask applications, we demonstrated a novel anti-reflective coating structure for deep ultraviolet binary mask, which is based on three-layer Fabry-Perot structure. The anti-reflective coating structure is composed of the chrome / oxide / chrome stack. By adding different optimized structures, reflectance of less than 2 % at both 248 nm and 193 nm has been achieved. The results are also agreed well with simulated ones. At the three-layer Fabry-Perot structure, the thickness of bottom chrome layer should be larger than 100 nm to provide suitable absorption. By controlling the thickness of the intermediate oxide layer, we can tune the minimum reflection regime for the desired exposure wavelength of interest. The thickness of top chrome layer should be well controlled in order to optimize transmission light into Fabry-Perot structures. In general, the mask layer should have good electrical conductivity for e-beam writing in order to prevent writing errors due to charging effects. In the Fabry-Perot structure, the top metal layer can also prevent charge accumulation during e-beam writing.
As to the investigation of the properties of a positive tone deep ultraviolet chemically amplified resist, UV86 (DUV CARs, Shipley®), has been evaluated for electron beam direct writing. Including the characteristics in electron beam lithography, etching process and thermal flow phenomena after hard baking. UV86 with its contrast higher than 16 is highly sensitive to electron beam exposure. The optimization condition for the electron beam lithography is SB 130℃/60 sec, PEB 135℃/90 sec with sensitivities of 11~13.5μC/cm2 at 40 kV. It could give contact holes critical dimension (CD) from 200 nm to 25 nm with almost perfect profiles by various hard baking temperatures. Moreover, the flow amount would decrease on hard baking temperature process by increasing the temperature of SB. In addition, the etching selectivity to thermal oxide, poly-Si and Cr has been examined by using the gas CHF3 / CF4, Cl2 / O2, and Cl2 / O2, respectively.
1. K. Suzuki, S. Matsui, and Y. Ochiai edited “Sub-Half-Micron Lithography for ULSIs”chapter1, (Cambridge University Press, Cambridge 2000), First published 2000.
2. P. F. Carcia, R. H. French, K. Sharp, J. S. Meth, B. W. Smith, Proc. SPIE 2884, 255 (1996).
3. M. Angelopoulos, J. M. Shaw, and K. L. Lee, Polymer Engineering and Science, 32 (20), pp.1535, Oct. (1992).
4. S. H. Magnus Persson, P. Dyreklev, and O. Inganas, Adv. Mater., 5, pp.405, (1996).
5. Y. Todokoro, A. Kajiya, and H. Watanabe, J. Vac. Sci. Technol., B6(1), pp.357, (1998).
6. W. S. Huang, Polymer, vol. 35, No 19, pp.4057, (1994).
7. C. Kutsche, J. Targove, and P. Haaland, J. Appl. Phys., 73(5), pp.2602, Mar. (1993).
8. H A Macleod, “Thin Film Optical Filters”, (Macmillan publication, 1986).
9. L. F. Thompson, C. G. Willson, and M. J. Bowden, “Introduction to Microlithography”, 2nd Ed. chapter 2, ACS, Washington, (1994).
10. S. Nonogaki, T. Ueno, and T. Ito, “ Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology” chapter 7, Marcel Dekker, New York, (1998).
11. Y. Someda, Y. Shoda, and N. Saitou, J. Vac. Sci. Technol., B14, pp3742, (1996).
12. D. Macintyre and S. Thoms, “High Resolution Electron Beam Lithography Studies on Shipley Chemically Amplified DUV Resists”, Microelectronic Engineering 35, 213-216 (1997).
13. S. Thoms and D. Macintyre, “Process Optimization of DUV Photoresists for Electron Beam Lithography”, Microelectronic Engineering 46, 287-290 (1997).
14. H. Elsner, H. -G. Meyer, A. Voigt and G. Grützner, “Evaluation of ma-N 2400 Series DUV Photoresist for Electron Beam Exposure”, Microelectronic Engineering 46, 389-392 (1999).
15. C. Magg and M. Lercel, “Chemically amplified resists for electron-beam projection lithography mask fabrication”, Proc. SPIE 3997, pp276-283 (2000).
16. Z. Masnyj, P. Mangat, E. Ainley, K. Nordquist and D. Resnick, “Evaluation of Negative DUV Resist UVN30 for Electron Beam Exposure of NGL Masks”, Proc. SPIE 3997, pp.525-529 (2000).
17. L. E. Ocola, M. I. Blakey, P. A. Orphanos, W. -Y. Li, A. E. Novembre, R. L. Brainard, J. F. Mackevich and G. N. Taylor, “Optimization of DUV Chemically Amplified Resist Platforms for SCALPEL E-beam Exposure”, Proc. SPIE 3997, pp.194-203 (2000).
18. J-S CHUN, H. E. KIM, S. BARNETT and J. SHIH, “Novel Hardening Methods of DUV Chemically Amplified Photoresist by Ion Implantation and Its Application to New Organic ARC Material and Bilayer Process”, Proc. SPIE 3678, 1364-1370 (1999).
19. K. Lucas, M. Slezak, M. Ercken and F. Van Roey, “193nm Contact Photoresist Reflow Feasibility Study”, Technical report from JSR Microelectronics, Sunnyvale, CA 94089, USA.
20. Takahiro Yamauchi et al., Jpn. J. Appl. Phys. Vol. 34, pp.6615-6621 (1995).
21. J-H Chung, S-J Choi, Y. Kang, S-G woo, and J-Tae Moon, “A Novel Resist Material for sub-100nm Contact Hole Pattern”, Proc. SPIE 3999, 305-312(2000).
22. J-S CHUN, S. BAKSHI, S. BARNETT, J. SHIH and S. LEE, “Contact Hole Size Reducing Methods by using Water-Soluble Organic Over-coating material (WASOOM) as a barrier layer toward 0.15μm contact hole; Resist flow technique I”, Proc. SPIE 3999, 620-626(2000).
23. K. Lucas, M. Slezak, M. Ercken and F. Van Roey, “193nm Contact Photoresist Reflow Feasibility Study”, Technical report from JSR Microelectronics, Sunnyvale, CA 94089, USA.
24. RELACS (Resolution Enhancement Lithography Assisted by Chemical Shrink), Technical report from Clariant.
25. B. J. Lin et al., Proc. SPIE 1463, 42 (1991).
26. C. A. Mack , "Depth of focus," Microlithography World, 1, 20 (1995).
27. 張俊彥主編,鄭晃忠校審,積體電路製程及設備技術手冊第十二章,中華民國產業科技發展協會,中華民國電子材料與元件協會出版1997。
28. 趙凱華,鍾錫華著,“光學”,p346-349,儒林圖書有限公司(1992).
29. 洪永隆,國立中央大學化學工程研究所碩士論文,(2000).
30. W. M. Moreau, Semiconductor Lithography, Plenum, New York, (1991).
31. Y. Chang, and S. M. Sze, ULSI Td hnology, McGRAW-HILL, NY, (1996).
32. 莊達人,“VLSI製造技術” 三版,p.236, 高立 (1996).
33. 龍文安,“積體電路微影製程” 初版,p.12, 高立 (1998).
34. V. Rao, W. D Hinsberg, C. W. Frank and R. F. W. Pease, Proc. SPIE,1925, 538(1993).
35. J. B. Lounsbury and M. A. Namashinham, ACS Conf.: Coating and Plastics, 37(2), 12(1977).
36. H. Ito, C. G. Wilson and J. M. J. Frechet, Symp. on VLSI Technology, Tech. Digest, 86(1982).
37. William D. Callister, Jr., “Materials Science and Engineering an Introduction”, 4th ed., p474, John Wiley & Sons, Inc. (1997).
38. A. Schiltz, J. F. Terpan, G. Amblard, and P. J. Paniez, Microelec. Eng., 35, pp.221 (1997).
39. C. H. Lin, S. D. Tzu, and A. Yen, Microelec. Eng., 46, pp.58 (1999).
40. S. Schiller, U. Heisig, and S. Panzer, “ ELECTRON BEAM TECHNOLOGY ”, p404-405, Berlin: VEB Verlag Technik, (1982).
41. T. C. Paulick, “ Inversion of normal-incidence (R, T) measurements to obtain n+ i k for thin films,” Appl. Opt. 25, pp.562 (1986).
42. Effiong Ibok, et. al., “Optical characterization of amorphous and polycrystalline silicon films”, Solid State Technology, August (1995).
43. T. M. Bloomstein et. al. J. Vac. Sci. Technol. B 15(6), p.2112~2116 (1997).
44. Semiconductor Industry Association, " International Technology Roadmap for Semiconductor 1999 Updated, (SIA publication, 1999)”.
45. B. W. Smith, A. Bourov, L. Zavyalova, and M. Cangemi, " Design and development of thin film materials for 157 nm and VUV wavelengths: APSM, binary masking, and optical coatings applications, "Proc. SPIE 3676, 350 (1999).