簡易檢索 / 詳目顯示

研究生: 文彥傑
Wen, Yanjie
論文名稱: 「智能云+納米材料+分子設計」 探討 環境與食品之民生議題
Approaching Environment and Food Safety Issues by Intelligent Cloud, Nano Materials and Molecular Design
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
Huang, Shang-Da
余靖
Yu, Chin
麥富德
Mai, Fu-Der
杜敬民
Duh, Jing-Min
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 195
中文關鍵詞: PM2.5二噁英石墨烯分子設計納米材料智能云
外文關鍵詞: PM2.5, dioxin, graphene, Molecular Design, Nano Materials, Intelligent Cloud
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要圍繞日常生活中常遇到的有害物質的檢測、分析與危害減輕方案而展開探討。具體的工作有:
    (1)利用“智慧空氣品質監測雲”系統個人終端這種方便靈活的檢測手段,定量證實了a) 使用公共綠色交通工具出行的健康與環保優勢,b) 室內外空氣污染回避方案及室內空氣淨化設備的效果,c) 全社會公眾參與的空氣品質監測平臺將發揮“大智移雲”特性,為政府之環保政策提供定量的第一手資料;
    (2)針對分子層面的環境有害物質(以二噁英為例),本文結合垃圾焚化廠周邊二噁英分佈情況,探討了二噁英的危害,並從其分子結構、分子光譜等物理化學特性入手,分析了降解或無害化處理的策略理論;
    (3)針對食品中可能攝入的有害物質(以棒曲黴素為例),製備了基於磁性納米氧化石墨烯的固相萃取材料,設計了基於紫外-可見檢測器的高效液相色譜檢測法,發現磁性材料對棒曲黴素萃取與脫附性能較好,有很好的食品安全檢測與應用潛力;
    (4)針對上述性能優良的磁性氧化石墨烯納米材料,本文通過密度泛函方法,設計了分子片段模型,分析了材料磁性性能的控制因素,並基於這些因素提出了磁性氧化石墨烯納米材料的定向設計策略。
    (5)綜述了石墨烯基材料作為人工酶催化劑之催化中心、作用位點、載體功能與的結構特點,為以後之石墨烯基材料設計提供了設計策略參考。石墨烯基材料作為人工酶催化劑其綠色高效的生物化學反應最終目標,是解決當今世界能源與環境危機的一個很實用且有前途的思路,也是當代先進化學工程技術的發展方向。


    In this work, conbined experimental and therotical research has been carried out, mainly focusing on the detection, analysis and mitigation plan of hazardous substances frequently encountered in daily life:
    (1) With the convenient personal device iDetector of ‘intelligent air quality monitoring cloud system’ we have testified a) the advantage of public transport in air pollution prevention, b) the suggested indoor and outdoor protection method from air pollution and the effect of indoor air purification equipment, c) the air quality intelligent cloud platform the whole community involved in would provide quantitative first-hand PMs’ information and support the government’s environmental policy.
    (2) For the notorious dioxin molecules in ambient air, both experimental and theoretical work has been carried out. Based on the distribution of dioxin around the incinerator, the dioxin molecules are discussed theoretically; based on the characteristics of molecular structure and molecular spectrum, the strategy of degradation or harmless treatment was evaluated.
    (3) For the harmful molecules contained in food (patulin), solid phase extraction material based on magnetic nano graphene oxide (MGO) was prepared. Then, patulin’s high performance liquid chromatograph analysis method based on UV-Vis detector was designed. It is found that MGO have good performance in sorption and desorption of patulin. It would have great potential on the harmful substance detection in food industry.
    (4) To establish the basic understandary of the design stratigy of MGO molecules, theoretical investigation in the MGO structure has been carried out. The molecular fragment model was designed by density functional theory (DFT) method, and the controlling factors of magnetic properties of the material were analyzed. Based on these factors, the directional design strategy of MGO nanomaterials is proposed.
    (5) Based on the viewpoints of stereo chemistry and molecular kinetic and dynamics in heterogeneous system, we evaluate and compare the suitability of different NMs as artificial enzyme constituent. We propose that reevaluates design strategies of graphene-based peroxidase (G-POD) mimetics materials and emphasizes on their selectivity (role as catalytic center, binding site, or carrier) is of uttermost.

    摘  要 1 Abstract 2 誌 謝 辭 3 目  次 7 圖 目 次 13 表 目 次 17 式 目 次 19 第一章 前言 20 第二章 “智能空氣品質監測雲”系統對大氣PM2.5等污染物的檢測研究 24 2.1 引言 25 2.2 檢測工具:“智能空氣品質監測雲”系統 30 2.2.1 系統組成 30 2.2.2 iDetector和iCellphone 32 2.2.2.1 PM激光粉塵傳感器 32 2.2.2.2 主電路板 34 2.2.2.3 溫度濕度與VOC傳感器 35 2.2.2.4 組裝成型的iDetector 37 2.2.2.5 iCellphone 37 2.2.3 iCloud和iExplorer 39 2.3 檢測方法 41 2.3.1 溫濕度校正 41 2.3.2 與當地環保部門監測站測值的比較 42 2.4 檢測目的 44 2.5 結果與討論 45 2.5.1 通勤交通工具上的PM狀況 45 2.5.1.1 地鐵:明显高出室外的PM濃度 45 2.5.1.2 普通小客車:車载空调有較好的降低PM的作用 47 2.5.1.3 大巴車:車载空调具有降低PM的作用 50 2.5.1.4 遠距離出行工具:高鐵列車上非常低的PM值 51 2.5.1.5 遠距離出行工具:飛機上的PM2.5濃度近乎零 52 2.5.1.6 小結 53 2.5.2 室內的PM2.5等污染 54 2.5.2.1 污染現狀 54 2.5.2.2 部分空氣净化器具有較好的降低PM的作用 56 2.5.2.3 家用空調在降低室内PM濃度方面的劣势 57 2.5.3 人流聚集區具有較高PM值 59 2.5.4 室外的“空氣净化器”——綠色植物 60 2.5.5 PM的普通全天吸入量 62 2.5.6 普及“智能空氣品質監測雲”系統的必要性 64 2.6 本章總結 65 第三章 大氣二噁英類污染物的危害及理論光譜分析法治理初探 66 3.1 引言 67 3.2 目標焚化廠與採樣點 70 3.3 分子光譜計算方法 72 3.4 結果與討論 73 3.4.1 焚化爐周界空氣二噁英污染的危害 74 3.4.2 二噁英類分子的分子結構與分子軌道 75 3.4.3 二噁英類分子的電子分佈和自然鍵軌道分析 77 3.4.4 二噁英類分子的激發態理化性質和理論光譜 81 3.5 本章總結 86 第四章 磁性氧化石墨烯納米材料之於蘋果汁中棒曲黴素污染物的檢測研究 88 4.1 引言 89 4.2 儀器與藥品 91 4.3 磁性氧化石墨烯納米材料的製備與應用 93 4.3.1 磁性氧化石墨烯納米材料的製備 93 4.3.2 磁性氧化石墨烯納米材料應用於蘋果汁樣品的前處理 95 4.3.3 蘋果汁中棒曲黴素的檢測 97 4.4 磁性氧化石墨烯納米材料的鑑定與吸脫附條件優化 99 4.4.1 磁性氧化石墨烯納米材料的性質研究 99 4.4.2 磁性氧化石墨烯納米材料應用於棒曲黴素吸脫附的條件優化 102 4.4.2.1 吸附劑用量之於吸附效率 102 4.4.2.2 吸附時間之於吸附效率 102 4.4.2.3 樣品pH值之於吸附效率 103 4.4.2.4 離子強度之於吸附效率 104 4.4.2.5 淋洗液種類之於脫附效率 104 4.4.2.6 淋洗液體積之於脫附效率 105 4.4.2.7 小結 105 4.4.3 磁性氧化石墨烯納米材料的可重複利用性 105 4.5 棒曲黴素的高效液相色譜檢測 106 4.5.1 建立HPLC-UV檢測棒曲黴素的方法 106 4.5.2 所提取棒曲黴素的HPLC-UV分析 107 4.5.3 本章建立的方法與相關已有方法的比較 109 4.6 本章總結 111 第五章 磁性氧化石墨烯納米材料的分子磁性設計 112 5.1 引言 113 5.2 理論模型設計 115 5.2.1 2a→6a的設計策略 116 5.2.2 2b→6b的設計策略 117 5.2.3 2c→6c的設計策略 117 5.2.4 2d→6d的設計策略 117 5.2.5 4e→6e的設計策略 118 5.2.6 6f的設計策略 118 5.2.7 小結 119 5.3 計算方法 120 5.4 結果與討論 123 5.4.1 雙自由基分子與凱庫勒結構破壞對分子磁性的影響 129 5.4.2 共軛體系與電子離域狀態對雙自由基及分子磁性的影響 132 5.4.3 吸電子基團對雙自由基和分子磁性的影響 135 5.4.4 分子中部橋連結構對雙自由基及分子磁性的影響 137 5.4.5 多個雙自由基共軛體系的分子磁性 139 5.4.6 雙自由基結構個數對分子磁性的影響 142 5.5 本章總結 145 第六章 石墨烯基過氧化物酶仿生材料的設計策略 146 6.1 引言 147 6.2 過氧化物酶的氧化還原化學 149 6.3 作為催化中心的石墨烯基納米材料 152 6.3.1 石墨烯、氧化石墨烯及還原氧化石墨烯 152 6.3.2 石墨烯基-金屬絡合物或石墨烯基-金屬蛋白 153 6.3.3 石墨烯基-金属颗粒雜化體 153 6.3.4 石墨烯基碳量子點 154 6.4 作為結合位點的石墨烯基納米材料 155 6.4.1. 石墨烯、氧化石墨烯及還原氧化石墨烯 155 6.4.2. 石墨烯基-金屬絡合物或石墨烯基-金屬蛋白 156 6.4.3. 石墨烯基-金屬顆粒雜化體 156 6.5 作為載體的石墨烯基納米材料 158 6.5.1. 氧化石墨烯及還原氧化石墨烯等納米材料 158 6.5.2. 石墨烯基-金屬絡合物或石墨烯基-金屬蛋白 159 6.5.3. 無機納米材料 159 6.6 石墨烯基納米材料作為各催化部位的優劣綜論 161 6.6.1 作為催化中心和作用位點的優劣比較 162 6.6.2 作為載體的優劣比較 164 6.7 本章總結 165 第七章 綜論與展望 166 參考文獻 171 附錄1 PM2.5濃度相關官方測值 188 附錄2 車載空調降低PM作用的效果圖 189 附錄3 二噁英大氣污染物採樣點衛星座標 191 附錄4 二噁英分子光譜計算方法 192 附錄5 博士班期間發表文章列表 195

    1. MohseniBandpi A, Eslami A, Shahsavani A, et al. Physicochemical characterization of ambient PM 2.5 in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549). Science of the Total Environment, 2017, 593: 182-190.
    2. United States Environmental Protection Agency. Particulate Matter (PM) Pollution. https://www.epa.gov/environmental-topics/air-topics.
    3. WHO. 關於顆粒物、臭氧、二氧化氮和二氧化硫的空氣品質準則. http://apps.who.int/iris/bitstream/10665/69477/3/WHO_SDE_PHE_OEH_06.02_chi.pdf.
    4. WHO. 2003—2010年PM10環境曝露值. http://www.un.org/zh/sustainability/
    airpollution/images/Global_pm10_countries_2003_2010.png.
    5. 白春禮. 中國科學院大氣灰霾追因與控制研究進展. 中國科學院院刊, 2017, (3): 215-218.
    6. 王躍思. 我國大氣灰霾污染現狀、治理對策建議與未來展望——王躍思研究員訪談. 中國科學院院刊, 2017, 32(3): 219-227.
    7. Choi D H, Kang D H. Infiltration of ambient PM2.5 through building envelope in apartment housing units in Korea. Aerosol and Air Quality Research, 2017, 17(2): 598-607.
    8. 劉兆榮. 如何清除室內的“霾”. 科學世界. 2016, 2: 94-97.
    9. Rumchev K, Zhao Y, Spickett J. Health Risk Assessment of Indoor Air Quality, Socioeconomic and House Characteristics on Respiratory Health among Women and Children of Tirupur, South India. International journal of environmental research and public health, Accepted, 13 April 2017.
    10. Mocarelli P, Needham L L, Marocchi A, et al. Serum concentrations of 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin and test results from selected residents of Seveso, Italy. Journal of Toxicology and Environmental Health, Part A Current Issues, 1991, 32(4): 357-366.
    11. 錢建亞, 熊強. 食品安全概論. 南京: 東南大學出版社, 2006.
    12. 白新鵬. 食品安全熱點問題解析. 北京: 中國計量出版社, 2009.
    13. Wielgosiński G. The reduction of dioxin emissions from the processes of heat and power generation. Journal of the Air & Waste Management Association, 2011, 61(5): 511-526.
    14. R D, et al. Gaussian 09. Gaussian, Inc., Wallingford CT, 2009.
    15. Shang H, Wang P, Wang T, et al. Bioaccumulation of PCDD/Fs, PCBs and PBDEs by earthworms in field soils of an E-waste dismantling area in China. Environment international, 2013, 54: 50-58.
    16. Wong J S Y, Cai Z W, Wong J W C. Analysis of dioxins in ambient air in the vicinity area of an incineration plant. Organohalogen Compounds, 2007, 69: 1460-1462.
    17. Cheng P S, Hsu M S, Ma E, et al. Levels of PCDD/Fs in ambient air and soil in the vicinity of a municipal solid waste incinerator in Hsinchu. Chemosphere, 2003, 52(9): 1389-1396.
    18. Christoph E H, Eisenreich S J, Ghiani M, et al. Levels and patterns of PCDD/Fs in air, soil and biota from Krakow and the Malopolska region (Poland). Organohalogen Compounds, 2006, 68: 1029-1033.
    19. Krauthacker B, Herceg R S, Wilken M, et al. PCDD/Fs in ambient air collected in Zagreb, Croatia. Chemosphere, 2006, 62: 1829-1837.
    20. Yang R T, Long R Q, Padin J, et al. Adsorbents for Dioxins:  A New Technique for Sorbent Screening for Low-Volatile Organics. Industrial & Engineering Chemistry Research, 1999, 38: 2726-2731.
    21. Jäger R, Schneider A M, Behrens P, et al. Selective Adsorption of Polychlorinated Dibenzo‐p‐dioxins and Dibenzofurans by the Zeosils UTD‐1, SSZ‐24, and ITQ‐4. Chemistry–A European Journal, 2004, 10(1): 247-256.
    22. Zhao Y Y, Tao F M, Zeng E Y. Theoretical study of the quantitative structure–activity relationships for the toxicity of dibenzo-p-dioxins. Chemosphere, 2008, 73(1): 86-91.
    23. Gastilovich E A, Klimenko V G, Korol'kova N V, et al. Excited electronic states and effect of vibronic-spin–orbit coupling on the radiative deactivation of the lowest triplet states of dioxins. Chemical Physics, 2001, 270(1): 41-54.
    24. Funk D J, Oldenborg R C, Dayton D P, et al. Gas-phase absorption and laser-induced fluorescence measurements of representative polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and a polycyclic aromatic hydrocarbon. Applied spectroscopy, 1995, 49(1): 105-114.
    25. Park H, Park Y, Kim W, et al. Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 15: 1-20.
    26. Choi W, Hong S J, Chang Y S, et al. Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation. Environmental science & technology, 2000, 34(22): 4810-4815.
    27. Wu C H, Chang-Chien G P, Lee W S. Photodegradation of polychlorinated dibenzo-p-dioxins: comparison of photocatalysts. Journal of hazardous materials, 2004, 114(1): 191-197.
    28. Wu C H, Ng H Y. Photodegradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans: direct photolysis and photocatalysis processes. Journal of hazardous materials, 2008, 151(2): 507-514.
    29. Marin S, Ramos A J, Cano-Sancho G, et al. Mycotoxins: occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology, 2013, 60: 218-237.
    30. Turner N W, Subrahmanyam S, Piletsky S A. Analytical methods for determination of mycotoxins: a review. Analytica chimica acta, 2009, 632(2): 168-180.
    31. Berthiller F, Crews C, Dall'Asta C, et al. Masked mycotoxins: a review. Molecular nutrition & food research, 2013, 57(1): 165-186.
    32. Egmond H P, Schothorst R C, Jonker M A. Regulations relating to mycotoxins in food. Analytical and Bioanalytical Chemistry, 2007, 1(389): 147-157.
    33. Brandon E F A, Baars A J, Biesebeek J D T, et al. Risk assessment of patulin intake from apple containing products by young children. World Mycotoxin Journal, 2012, 5(4): 391-403.
    34. Barreira M J, Alvito P C, Almeida C M M. Occurrence of patulin in apple-based-foods in Portugal. Food Chemistry, 2010, 121(3): 653-658.
    35. Beretta B, Gaiaschi A, Galli C L, et al. Patulin in apple-based foods: occurrence and safety evaluation. Food Additives & Contaminants, 2000, 17(5): 399-406.
    36. Regulation C. Council Regulation (EC) No. 2027/2006 of 19 December 2006 on the con clusion of the fisheries partnership agreement between the European Community and the Republic of Cape Verde. Off. J. Eur. Union L, 2006 (414): 1-25.
    37. Iha M H, de Souza S V C, Sabino M. Single-laboratory validation of a liquid chromatography method for the determination of patulin in apple juice. Food Control, 2009, 20(6): 569-574.
    38. Kharandi N, Babri M, Azad J. A novel method for determination of patulin in apple juices by GC–MS. Food chemistry, 2013, 141(3): 1619-1623.
    39. Mochizuki N, Hoshino M, Suga K, et al. Identification of an interfering substrate in apple juice and improvement for determination of patulin with high-performance liquid chromatography analyses. Journal of Food Protection, 2009, 72(4): 805-809.
    40. Mohammadi A, Tavakoli R, Kamankesh M, et al. Enzyme-assisted extraction and ionic liquid-based dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for determination of patulin in apple juice and method optimization using central composite design. Analytica chimica acta, 2013, 804: 104-110.
    41. Lee P L, Chiu Y K, Sun Y C, et al. Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent. Carbon, 2010, 48(5): 1397-1404.
    42. Li J, Wu R, Hu Q, et al. Solid-phase extraction and HPLC determination of patulin in apple juice concentrate. Food Control, 2007, 18(5): 530-534.
    43. Gollavelli G, Chang C C, Ling Y C. Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustainable Chemistry & Engineering, 2013, 1(5): 462-472.
    44. Han Q, Wang Z, Xia J, et al. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta, 2012, 101: 388-395.
    45. Pan S D, Zhou L X, Zhao Y G, et al. Amine-functional magnetic polymer modified graphene oxide as magnetic solid-phase extraction materials combined with liquid chromatography–tandem mass spectrometry for chlorophenols analysis in environmental water. Journal of Chromatography A, 2014, 1362: 34-42.
    46. Malysheva S V, Di Mavungu J D, Boonen J, et al. Improved positive electrospray ionization of patulin by adduct formation: Usefulness in liquid chromatography–tandem mass spectrometry multi-mycotoxin analysis. Journal of Chromatography A, 2012, 1270: 334-339.
    47. Sun J, Liang Q, Han Q, et al. One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples. Talanta, 2015, 132: 557-563.
    48. Sitko R, Zawisza B, Malicka E. Graphene as a new sorbent in analytical chemistry. TrAC Trends in Analytical Chemistry, 2013, 51: 33-43.
    49. Iha M H, de Souza S V C, Sabino M. Single-laboratory validation of a liquid chromatography method for the determination of patulin in apple juice. Food Control, 2009, 20(6): 569-574.
    50. Marín S, Mateo E M, Sanchis V, et al. Patulin contamination in fruit derivatives, including baby food, from the Spanish market. Food chemistry, 2011, 124(2): 563-568.
    51. Piqué E, Vargas-Murga L, Gómez-Catalán J, et al. Occurrence of patulin in organic and conventional apple-based food marketed in Catalonia and exposure assessment. Food and chemical toxicology, 2013, 60: 199-204.
    52. Rodríguez-Carrasco Y, Berrada H, Font G, et al. Multi-mycotoxin analysis in wheat semolina using an acetonitrile-based extraction procedure and gas chromatography–tandem mass spectrometry. Journal of Chromatography A, 2012, 1270: 28-40.
    53. Vaclavikova M, Dzuman Z, Lacina O, et al. Monitoring survey of patulin in a variety of fruit-based products using a sensitive UHPLC–MS/MS analytical procedure. Food Control, 2015, 47: 577-584.
    54. Valle-Algarra F M, Mateo E M, Gimeno-Adelantado J V, et al. Optimization of clean-up procedure for patulin determination in apple juice and apple purees by liquid chromatography. Talanta, 2009, 80(2): 636-642.
    55. Valle-Algarra F M, Mateo E M, Gimeno-Adelantado J V, et al. Optimization of clean-up procedure for patulin determination in apple juice and apple purees by liquid chromatography. Talanta, 2009, 80(2): 636-642.
    56. Mohammadi A, Tavakoli R, Kamankesh M, et al. Enzyme-assisted extraction and ionic liquid-based dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for determination of patulin in apple juice and method optimization using central composite design. Analytica chimica acta, 2013, 804: 104-110.
    57. Kharandi N, Babri M, Azad J. A novel method for determination of patulin in apple juices by GC–MS. Food chemistry, 2013, 141(3): 1619-1623.
    58. Kharandi N, Babri M, Azad J. A novel method for determination of patulin in apple juices by GC–MS. Food chemistry, 2013, 141(3): 1619-1623.
    59. Funes G J, Resnik S L. Determination of patulin in solid and semisolid apple and pear products marketed in Argentina. Food Control, 2009, 20(3): 277-280.
    60. Wu R N, Dang Y L, Niu L, et al. Application of matrix solid-phase dispersion–HPLC method to determine patulin in apple and apple juice concentrate. Journal of food composition and analysis, 2008, 21(7): 582-586.
    61. Beltrán E, Ibáñez M, Sancho J V, et al. Determination of patulin in apple and derived products by UHPLC–MS/MS. Study of matrix effects with atmospheric pressure ionisation sources. Food chemistry, 2014, 142: 400-407.
    62. Desmarchelier A, Mujahid C, Racault L, et al. Analysis of patulin in pear-and apple-based foodstuffs by liquid chromatography electrospray ionization tandem mass spectrometry. Journal of agricultural and food chemistry, 2011, 59(14): 7659-7665.
    63. Malysheva S V, Di Mavungu J D, Boonen J, et al. Improved positive electrospray ionization of patulin by adduct formation: Usefulness in liquid chromatography–tandem mass spectrometry multi-mycotoxin analysis. Journal of Chromatography A, 2012, 1270: 334-339.
    64. Malysheva S V, Di Mavungu J D, Boonen J, et al. Improved positive electrospray ionization of patulin by adduct formation: Usefulness in liquid chromatography–tandem mass spectrometry multi-mycotoxin analysis. Journal of Chromatography A, 2012, 1270: 334-339.
    65. Iha M H, de Souza S V C, Sabino M. Single-laboratory validation of a liquid chromatography method for the determination of patulin in apple juice. Food Control, 2009, 20(6): 569-574.
    66. Williams T J, Aczel A A, Lumsden M D, et al. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Physical Review B, 2015, 92(14): 144404.
    67. Das S K, Bedar A, Kannan A, et al. Aqueous dispersions of few-layer-thick chemically modified magnesium diboride nanosheets by ultrasonication assisted exfoliation. Scientific reports, 2015, 5: 10522.
    68. Zhu Q, Lu Y H, Jiang J Z. Stability and properties of two-dimensional graphene hydroxide. The journal of physical chemistry letters, 2011, 2(11): 1310-1314.
    69. Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453.
    70. Jin Z, Wang X, Sun Y, et al. Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environmental science & technology, 2015, 49(15): 9168-9175.
    71. Ji L, Bai X, Zhou L, et al. One-pot preparation of graphene oxide magnetic nanocomposites for the removal of tetrabromobisphenol A. Frontiers of Environmental Science & Engineering, 2013, 7(3): 442-450.
    72. Bazylewski P, Boukhvalov D W, Kukharenko A I, et al. The characterization of Co-nanoparticles supported on graphene. RSC Advances, 2015, 5(92): 75600-75606.
    73. Taniguchi T, Yokoi H, Nagamine M, et al. Correlated optical and magnetic properties in photoreduced graphene oxide. The Journal of Physical Chemistry C, 2014, 118(48): 28258-28265.
    74. Xu K, Ye P D. Theoretical study of atomic layer deposition reaction mechanism and kinetics for aluminum oxide formation at graphene nanoribbon open edges. The Journal of Physical Chemistry C, 2010, 114(23): 10505-10511.
    75. Tang T, Tang N, Zheng Y, et al. Robust magnetic moments on the basal plane of the graphene sheet effectively induced by OH groups. Scientific reports, 2015, 5: 8448.
    76. Lee D, Seo J, Zhu X, et al. Magnetism in graphene oxide induced by epoxy groups. Applied Physics Letters, 2015, 106(17): 172402.
    77. Yang H, Han L, Zhao J, et al. Magnetism‐Tunable Oligoacene Dioxide Diradicals: Promising Magnetic Oligoacene‐Like Molecules. ChemPhysChem, 2012, 13(18): 4148-4154.
    78. Wang H, Liu Y, Wang H, et al. Stability and properties of the two-dimensional hexagonal boron nitride monolayer functionalized by hydroxyl (OH) radicals: a theoretical study. Journal of molecular modeling, 2013, 19(12): 5143-5152.
    79. Guo H, Zhao Y, Lu N, et al. Tunable magnetism in a nonmetal-substituted ZnO monolayer: a first-principles study. The Journal of Physical Chemistry C, 2012, 116(20): 11336-11342.
    80. Choi J, Tu N D K, Lee S S, et al. Controlled oxidation level of reduced graphene oxides and its effect on thermoelectric properties. Macromolecular Research, 2014, 22(10): 1104-1108.
    81. Hu F X, Le Xie J, Bao S J, et al. Shape-controlled ceria-reduced graphene oxide nanocomposites toward high-sensitive in situ detection of nitric oxide. Biosensors and Bioelectronics, 2015, 70: 310-317.
    82. Abalyaeva V V, Baskakov S A, Dremova N N. Controlled electrosynthesis of polyaniline on branched surface of reduced graphene oxide. Russian Journal of Electrochemistry, 2015, 51(10): 976-985.
    83. Zhu X, Xu J, Duan X, et al. Controlled synthesis of partially reduced graphene oxide: enhance electrochemical determination of isoniazid with high sensitivity and stability. Journal of Electroanalytical Chemistry, 2015, 757: 183-191.
    84. Buttry D A, Anson F C. Effects of electron exchange and single-file diffusion on charge propagation in Nafion films containing redox couples. Journal of the American Chemical Society, 1983, 105(4): 685-689.
    85. Mohr P J, Soff G. Nuclear size correction to the electron self-energy. Physical review letters, 1993, 70(2): 158-161.
    86. Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 2010, 22(35): 3906-3924.
    87. Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide. Chemical Society Reviews, 2010, 39(1): 228-240.
    88. Swinborne-Sheldrake R, Herndon W C, Gutman I. Kekulé structures and resonance energies of benzenoid hydrocarbons. Tetrahedron Letters, 1975, 16(10): 755-758.
    89. Bogani L, Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nature materials, 2008, 7(3): 179-186.
    90. Dirac, P. A. In The quantum theory of the electron, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society: 1928, 610-624.
    91. Kane B E. A silicon-based nuclear spin quantum computer. nature, 1998, 393(6681): 133-137.
    92. Tarucha S, Austing D G, Honda T, et al. Shell filling and spin effects in a few electron quantum dot. Physical Review Letters, 1996, 77(17): 3613-3616.
    93. Gordon R G, Kim Y S. Theory for the Forces between Closed‐Shell Atoms and Molecules. The Journal of Chemical Physics, 1972, 56(6): 3122-3133.
    94. Roothaan C C J. Self-consistent field theory for open shells of electronic systems. Reviews of modern physics, 1960, 32(2): 179-185.
    95. Roothaan C C J. New developments in molecular orbital theory. Reviews of modern physics, 1951, 23(2): 69-89.
    96. Parr R G, Weitao Y. Density-functional theory of atoms and molecules. Oxford university press, 1994.
    97. Boča R. Theoretical foundations of molecular magnetism. Elsevier, 1999.
    98. Bogani L, Wernsdorfer W. Molecular spintronics using single-molecule magnets. Nature materials, 2008, 7(3): 179-186.
    99. Simon B, Dicke A. Coupling constant analyticity for the anharmonic oscillator. Annals of Physics, 1970, 58(1): 76-136.
    100. Bell F, Casanova D, Head-Gordon M. Theoretical study of substituted PBPB dimers: Structural analysis, tetraradical character, and excited states. Journal of the American Chemical Society, 2010, 132(32): 11314-11322.
    101. Ko K C, Cho D, Lee J Y. Systematic Approach To Design Organic Magnetic Molecules: Strongly Coupled Diradicals with Ethylene Coupler. The Journal of Physical Chemistry A, 2012, 116(25): 6837-6844.
    102. Yamaguchi K, Jensen F, Dorigo A, et al. A spin correction procedure for unrestricted Hartree-Fock and Møller-Plesset wavefunctions for singlet diradicals and polyradicals. Chemical physics letters, 1988, 149(5-6): 537-542.
    103. Yamaguchi K, Takahara Y, Fueno T, et al. Ab initio MO calculations of effective exchange integrals between transition-metal ions via oxygen dianions: nature of the copper-oxygen bonds and superconductivity. Japanese journal of applied physics, 1987, 26(8A): 1362-1364.
    104. Ko K C, Son S U, Lee S, et al. Diazaphenalenyl-Containing Spin Sources Designed by Standardization of Intramolecular Magnetic Interactions. The Journal of Physical Chemistry B, 2011, 115(26): 8401-8408.
    105. Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Physical Review B, 2002, 65(16): 165401.
    106. Weinert M, Wimmer E, Freeman A J. Total-energy all-electron density functional method for bulk solids and surfaces. Physical Review B, 1982, 26(8): 4571-4578.
    107. Veitch NC. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry, 2004, 65(3): 249-259.
    108. Wang GL, Xu XF, Wu XM, et al. Visible-light-stimulated enzymelike activity of graphene oxide and its application for facile glucose sensing. Journal of Physical Chemistry C, 2014, 118(48): 28109-28117.
    109. Zheng XJ, Zhu Q, Song HQ, et al. In situ synthesis of self-assembled three-dimensional graphene-magnetic palladium nanohybrids with dual-enzyme activity through one-pot strategy and its application in glucose probe. Acs Applied Materials & Interfaces, 2015, 7(6): 3480-3491.
    110. Pauling L. Nature of forces between large molecules of biological interest. Nature, 1948, 161(4097): 707-709.
    111. Cramer F, Kampe W. Inclusion compounds .17. Catalysis of decarboxylation by cyclodextrins - a model reaction for mechanism of enzymes. J Am Chem Soc, 1965, 87(5): 1115-1120.
    112. Takagish.T, Klotz IM. Macromolecule-small molecule interactions - introduction of additional binding-sites in polyethyleneimine by disulfide crosslinkages. Biopolymers, 1972, 11(2): 483-491.
    113. Klotz IM, Royer GP, Scarpa IS. Synthetic derivatives of polyethyleneimine with enzyme-like catalytic activity (synzymes). Proc Natl Acad Sci U S A, 1971, 68(2): 263-264.
    114. Wolfenden R, Snider MJ. The depth of chemical time and the power of enzymes as catalysts. Accounts Chem Res, 2001, 34(12): 938-945.
    115. Garcia-Viloca M, Gao J, Karplus M, et al. How enzymes work: Analysis by modern rate theory and computer simulations. Science, 2004, 303(5655): 186-195.
    116. Breslow R. Centenary lecture - biomimetic chemistry. Chem Soc Rev, 1972, 1(4): 553-580.
    117. Tabushi I. Cyclodextrin catalysis as a model for enzyme action. Accounts Chem Res, 1982, 15(3): 66-72.
    118. Breaker RR, Joyce GF. A DNA enzyme that cleaves rna. Chemistry & biology, 1994, 1(4): 223-229.
    119. Agostini E, Hernandez-Ruiz J, Arnao MB, et al. A peroxidase isoenzyme secreted by turnip (brassica napus) hairy-root cultures: Inactivation by hydrogen peroxide and application in diagnostic kits. Biotechnol Appl Biochem, 2002, 35: 1-7.
    120. Friedle S, Reisner E, Lippard SJ. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem Soc Rev, 2010, 39(8): 2768-2779.
    121. Seibert E, Tracy TS. Fundamentals of enzyme kinetics. Methods in molecular biology (Clifton, NJ), 2014, 1113: 9-22.
    122. Clarke JR, Marquardt RR, Oosterveld A, et al. Development of a quantitative and sensitive enzyme-linked-immunosorbent-assay for ochratoxin-a using antibodies from the yolk of the laying hen. J Agric Food Chem, 1993, 41(10): 1784-1789.
    123. Zhou YL, Wang M, Xu ZN, et al. Investigation of the effect of phytohormone on the expression of microrna-159a in arabidopsis thaliana seedlings based on mimic enzyme catalysis systematic electrochemical biosensor. Biosensors & Bioelectronics, 2014, 54: 244-250.
    124. Schoemaker HE, Piontek K. On the interaction of lignin peroxidase with lignin. Pure Appl Chem, 1996, 68(11): 2089-2096.
    125. Wan XJ, Huang Y, Chen YS. Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Accounts Chem Res, 2012, 45(4): 598-607.
    126. Zhao RS, Zhao X, Gao XF. Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem-Eur J, 2015, 21(3): 960-964.
    127. Bhabak KP, Mugesh G. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Accounts Chem Res, 2010, 43(11): 1408-1419.
    128. Bonarlaw RP, Sanders JKM. Polyol recognition by a steroid-capped porphyrin - enhancement and modulation of misfit guest binding by added water or methanol. J Am Chem Soc, 1995, 117(1): 259-271.
    129. Tabushi I, Shimizu N, Sugimoto T, et al. Cyclodextrin flexibly capped with metal-ion. J Am Chem Soc, 1977, 99(21): 7100-7102.
    130. Li RM, Zhen MM, Guan MR, et al. A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes. Biosensors & Bioelectronics, 2013, 47: 502-507.
    131. Liu S, Wang L, Zhai JF, et al. Carboxyl functionalized mesoporous polymer: A novel peroxidase-like catalyst for H2O2 detection. Analytical Methods, 2011, 3(7): 1475-1477.
    132. Safavi A, Sedaghati F, Shahbaazi H, et al. Facile approach to the synthesis of carbon nanodots and their peroxidase mimetic function in azo dyes degradation. Rsc Advances, 2012, 2(19): 7367-7370.
    133. Shi WB, Wang QL, Long YJ, et al. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chemical Communications, 2011, 47(23): 6695-6697.
    134. Song YJ, Wang XH, Zhao C, et al. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem-Eur J, 2010, 16(12): 3617-3621.
    135. Cuevas F, Di Stefano S, Magrans JO, et al. Toward an artificial acetylcholinesterase. Chem-Eur J, 2000, 6(17): 3228-3234.
    136. Lin YH, Ren JS, Qu XG. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Accounts Chem Res, 2014, 47(4): 1097-1105.
    137. Zhang LN, Deng HH, Lin FL, et al. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Analytical Chemistry, 2014, 86(5): 2711-2718.
    138. Wei H, Wang EK. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem Soc Rev, 2013, 42(14): 6060-6093.
    139. Liu GF, Zhang X, Zhou JT, et al. Quinone-mediated microbial synthesis of reduced graphene oxide with peroxidase-like activity. Bioresource Technology, 2013, 149: 503-508.
    140. Sun W, Ju XM, Zhang YY, et al. Application of carboxyl functionalized graphene oxide as mimetic peroxidase for sensitive voltammetric detection of h2o2 with 3,3',5,5'-tetramethylbenzidine. Electrochemistry Communications, 2013, 26: 113-116.
    141. Wang ZB, Lv XC, Weng J. High peroxidase catalytic activity of exfoliated few-layer graphene. Carbon, 2013, 62: 51-60.
    142. Zhang B, He Y, Liu BQ, et al. Nicobp-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay. Anal Chim Acta, 2014, 851: 49-56.
    143. Chen W, Liu GC, Ouyang J, et al. Graphene nanopores toward DNA sequencing: A review of experimental aspects. Sci China-Chem, 2017, 60(6): 721-729.
    144. Alkassim L, Taylor KE, Nicell JA, et al. Enzymatic removal of selected aromatic contaminants from waste-water by a fungal peroxidase from coprinus-macrorhizus in batch reactors. J Chem Technol Biotechnol, 1994, 61(2): 179-182.
    145. O'Brien PJ. Peroxidases. Chem-Biol Interact, 2000, 129(1-2): 113-139.
    146. Green MT, Dawson JH, Gray HB. Oxoiron (IV) in chloroperoxidase compound ii is basic: Implications for p450 chemistry. Science, 2004, 304(5677): 1653-1656.
    147. Quick KL, Ali SS, Arch R, et al. A carboxyfullerene sod mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging, 2008, 29(1): 117-128.
    148. Aitken MD, Massey IJ, Chen TP, et al. Characterization of reaction-products from the enzyme-catalyzed oxidation of phenolic pollutants. Water Res, 1994, 28(9): 1879-1889.
    149. Kim JG, Park SJ, Sinninghe Damsté JS, et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc Natl Acad Sci U S A, 2016, 113(28): 7888-7893.
    150. Chen XM, Su BY, Cai ZX, et al. Ptpd nanodendrites supported on graphene nanosheets: A peroxidase-like catalyst for colorimetric detection of h2o2. Sensors and Actuators B-Chemical, 2014, 201: 286-292.
    151. Gao LZ, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol, 2007, 2(9): 577-583.
    152. He WW, Wu XC, Liu JB, et al. Design of agm bimetallic alloy nanostructures (m = Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mat, 2010, 22(9): 2988-2994.
    153. Zhan L, Li CM, Wu WB, et al. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles-graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chemical Communications, 2014, 50(78): 11526-11528.
    154. Chen X, Zhai N, Snyder JH, et al. Colorimetric detection of hg2+ and pb2+ based on peroxidase-like activity of graphene oxide-gold nanohybrids. Analytical Methods, 2015, 7(5): 1951-1957.
    155. Garg B, Ling YC. A highly selective phenothiazine-based fluorescence 'turn-on' indicator based on cyanide-promoted novel protection/deprotection mechanism. Chemical Communications, 2015, 51(42): 8809-8812.
    156. Weber R, Gaus C, Tysklind M, et al. Dioxin- and pop-contaminated sites-contemporary and future relevance and challenges. Environ Sci Pollut Res, 2008, 15(5): 363-393.
    157. Longoria A, Tinoco R, Vazquez-Duhalt R. Chloroperoxidase-mediated transformation of highly halogenated monoaromatic compounds. Chemosphere, 2008, 72(3): 485-490.
    158. Jauregui J, Valderrama B, Albores A, et al. Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation, 2003, 14(6): 397-406.
    159. Thurston CF. The structure and function of fungal laccases. Microbiology-(UK), 1994, 140: 19-26.
    160. Asati A, Santra S, Kaittanis C, et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem-Int Edit, 2009, 48(13): 2308-2312.

    QR CODE