簡易檢索 / 詳目顯示

研究生: 康皓維
論文名稱: 高效率真空蒸鍍有機光電元件之元件與光學工程
Device and Optical Engineering for Efficient Vacuum-Deposited Organic Optoelectronic Devices
指導教授: 林皓武
口試委員: 汪根欉
吳志毅
朱治偉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 185
中文關鍵詞: 有機光電元件有機小分子真空蒸鍍元件光學工程
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究以真空蒸鍍製程之有機光電元件的光學與元件結構對元件表現的影響。
    首先,介紹有機太陽能電池的歷史及目前發展現況,接著講解有機太陽能電池的運作機制、元件結構種類、有機材料基本性質分析、元件製作與量測分析。
    論文的第二部份,將探討陰極緩衝層材料與結構對於有機太陽能電池元件表現的影響,我們以NTCDA與PTCBI搭配製作出能任意調整厚度的光學間隔層,並在PTCBI上覆蓋一層金屬Ca以增加元件穩定性;另外,我們以Bphen搭配Ca的雙層陰極緩衝層作為電子萃取層,使用雙層陰極緩衝層的元件能夠較只有Bphen陰極緩衝層的元件有更佳的效率。
    論文的第三部分,介紹一系列小分子donor的發展進行文獻回顧。在D-A型式分子中,D-π-A-A的DT4MIDTP與C70以體積比1:1的共蒸鍍比例所製作的平面混合異質接面結構元件有最佳的元件表現,元件效率高達4.22 %,並在製作成平面混合異質接面串聯結構元件後,將元件效率進一步提升至4.6 %。之後我們探討DT4TIDTP與DT4MIDTP兩D-π-A-A型式分子在經過熱退火處理後分子的光電特性改變。在平面型異質接面元件中,DT4MIDTP元件在適當溫度的pre-annealing處理後元件效率從1.3 %提升至2.5 %,並在製作成平面型異質接面串聯結構元件後,將元件效率進一步提升至2.87 %。而在oligothiophene分子中,DTPTtDCV與C70以體積比1:1.5的共蒸鍍比例所製作的平面混合型異質接面結構元件有最佳的元件表現,元件效率達3.02 %。
    論文的第四部份,我們將金屬微共振腔結構應用於光響應元件中,以光學模擬搭配實驗製作出高效率全可見光頻譜光響應元件,並在適當的抗反射層厚度與微共振腔長度下,金屬微共振腔光響應元件能夠在特定波長範圍內比ITO陽極元件有較高的光響應。接著我們以有機材料製作出具週期性結構的wrinkle表面,在嘗試不同材料搭配與製程條件後,成功製作出週期接近於可見光的奈米結構。最後我們將wrinkle表面應用於有機太陽能電池與有機發光二極體中,利用奈米結構增加元件的in-coupling/out-coupling的特性,成功提升元件效率。


    In this thesis, I focus on the optical properties and device engineering of vacuum-deposited organic optoelectronics.
    In the first part, I briefly review the development of organic solar cells (OSCs), followed by working mechanisms, device structures of OSCs, material analyses, device deposition methods and measurements of OSCs.
    In the second part of thesis, 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) and 3,4,9,10-perylenetetracarboxylic-bisbenzimidazole (PTCBI) were used to replace 2,9-dimethyl-4,7-di(phenyl)-1,10-phenanthroline (BCP) as optical spacing layer in OSCs. Furthermore, a Ca buffer layer is capped on PTCBI to modify morphological roughness. In addition, an effective bilayer cathode buffer layer for highly efficient small molecule organic solar cells (SMOSCs) is demonstrated. By integrating 4,7-di(phenyl)-1,10-phenanthroline (Bphen)/1 nm Ca bilayer buffer layer, the power conversion efficiency (PCE) enhances over 20 % compared to a device with a traditional Bphen buffer layer.
    In the third part, before evaluating new donor compounds for SMOSCs, I review some previous studies of small molecular donors employed in SMOSCs . Among all donor-acceptor (D-A) structured donor compounds in this study, DT4MIDTP, a donor with the donor-π bridge-acceptor-acceptor (D-π-A-A) molecular structure, shows the best performance by utilizing the planar mixed heterojunction (PMHJ) structure. The optimized blend ratio is DT4MIDTP:C70 = 1:1 (by volume), giving a PCE of up to 4.22 %. The PCE further improves to 4.6 % by utilizing the tandem PMHJ structure. The electrical and optical properties of DT4TIDTP and DT4MIDTP films after thermal annealing are also investigated. With appropriate pre-annealing treatment, the performance of DT4MIDTP device with planar heterojunction structure improves from 1.3 % to 2.5 %. DTPTtDCV, a donor with oligothiophene core, shows the most promising characteristics among all oligothiophene core donor systems in this study with best PCE up to 3.02 %.
    In the last part of this thesis, by the aid of our home-made optical simulation program, micro-cavity organic photodetectors (OPDs) with high photoresponsitivity across the entire visible region are demonstrated. In order to enhance the photoresponse of a particular wavelength region, the thicknesses of transparent anti-reflection layers and hole transporting layers are modeled and designed. The OPDs with enhanced photoresponse at target wavelengths are realized. Finally, an in-situ all-vacuum-deposition method to fabricate controllable periodic wrinkling surfaces is demonstrated. By utilizing these wrinkling surfaces as light trapping and light scattering layer in organic optoelectronics, efficient devices with enhanced light in-coupling/out-coupling efficiency are demonstrated.

    目錄 摘要 I Abstract III 目錄 V 圖目錄 XII 表目錄 XXII Chapter 1 緒論 1 1-1 前言 1 1-2 太陽能電池發展 1 1-3 有機太陽能電池發展 3 1-4 論文結構 4 1-5 圖表附錄 5 Chapter 2 有機太陽能電池工作原理與特性量測 6 2-1 太陽光光譜 6 2-2 有機太陽能電池運作機制 8 2-3 有機太陽能電池光電特性 10 2-3.1 開路電壓 (open circuit voltage, Voc) 10 2-3.2 短路電流 (short circuit current, Jsc) 10 2-3.3 填充因子 (fill factor, F.F.) 10 2-3.4 光電轉換效率 (power conversion efficiency, PCE) 11 2-3.5 外部量子效率 (external quantum efficiency, E.Q.E.) 11 2-4 有機太陽能電池元件結構 12 2-4.1 主動層結構不同分為 12 2-4.2 串聯式結構 (tandem cell) 12 2-5 材料的光物理性質量測 14 2-6 元件製作方法 14 2-6.1 基板製備與清洗 14 2-6.2 元件製作方法 15 2-6.3 元件封裝 15 2-7 量測 16 2-7.1 J-V特性曲線量測 16 2-7.2 不同光源強度下J-V特性曲線量測 16 2-7.3 外部量子效率量測 16 Chapter 3 有機太陽能電池之陰極緩衝層研究 17 3-1 緩衝層簡介與文獻回顧 17 3-2 陰極傳輸層材料基本性質 20 3-3 有機太陽能電池之陰極緩衝層光學模擬 23 3-4 有機太陽能電池之光學間隔層研究 25 3-4.1 以NTCDA/PTCBI作為陰極緩衝層之有機太陽能電池 25 3-4.2 以NTCDA/PTCBI/Ca作為陰極緩衝層之有機太陽能電池 29 3-5 有機太陽能電池之雙層陰極緩衝層研究 34 3-5.1 以低功函數材料與Bphen作為陰極緩衝層之有機太陽能電池 34 3-5.2 雙層陰極緩衝層之光電特性研究 37 3-6 結論 43 Chapter4 真空蒸鍍製程新穎小分子太陽能電池 44 4-1 D-A小分子發展與簡介 44 4-1.1 Merocyanine dyes 44 4-1.2 TPDCDTS 44 4-1.3 DTDCTB, DTDCPB, DPDCPB, DPDCTB 45 4-1.4 DTDCTP 45 4-1.5 InTTCz, InTTD, InCNTTD 45 4-1.6 DPTMM 46 4-1.7 DTTh, DTTz 46 4-1.8 DTDCTBS, DTDCTBO, DTDCPBS, DTDCPBO 46 4-2 D-A小分子材料基本光電與元件特性 48 4-2.1 DT4TIDTP與DT4MIDTP 48 4-2.1.1 DT4TIDTP與DT4MIDTP光物理性質 49 4-2.1.1.1 紫外光-可見光吸收頻譜 49 4-2.1.1.2 光學係數 49 4-2.1.1.3 光電子頻譜 49 4-2.1.2 DT4TIDTP有機小分子太陽能電池 52 4-2.1.2.1 DT4TIDTP平面型異質接面結構元件 52 4-2.1.2.2 DT4TIDTP平面混合異質接面結構元件-改變混合層比例 52 4-2.1.2.3 DT4TIDTP平面混合異質接面結構元件-改變混合層厚度 53 4-2.1.3 DT4MIDTP有機小分子太陽能電池 60 4-2.1.3.1 DT4MIDTP平面型異質接面結構元件 60 4-2.1.3.2 DT4MIDTP平面混合異質接面結構元件-改變混合層厚度 60 4-2.1.3.3 DT4MIDTP平面混合異質接面串聯結構元件 61 4-2.1.4 DT4TIDTP與DT4MIDTP熱性質與表面形貌分析 69 4-2.1.4.1 DT4TIDTP與DT4MIDTP熱性質(Td, Tm, Tc, Tg) 69 4-2.1.4.2 DT4TIDTP與DT4MIDTP熱退火前後之光學性質 69 4-2.1.4.3 DT4TIDTP與DT4MIDTP熱退火前後之表面形貌 70 4-2.1.5 DT4TIDTP有機小分子太陽能電池之熱退火處理 74 4-2.1.5.1 DT4TIDTP平面型異質接面結構元件 74 4-2.1.6 DT4MIDTP有機小分子太陽能電池之熱退火處理 78 4-2.1.6.1 DT4MIDTP平面型異質接面結構元件- post-annealing & pre-annealing 78 4-2.1.6.2 DT4MIDTP平面型異質接面結構元件-改變熱退火溫度 79 4-2.1.6.3 DT4MIDTP平面型異質接面結構元件-改變DT4MIDTP厚度 79 4-2.1.6.4 DT4MIDTP平面型異質接面串聯結構元件 79 4-2.2 DTPTP 89 4-2.2.1 DTPTP光物理性質 90 4-2.2.1.1 紫外光-可見光吸收頻譜 90 4-2.2.1.2 光學係數 90 4-2.2.1.3 光電子頻譜 90 4-2.2.2 DTPTP有機小分子太陽能電池 93 4-3 Oligothiophene小分子發展與簡介 96 4-3.1 Octithiophene 96 4-3.2 Alpha-sexithiophen 96 4-3.3 Vinyl-, cyano-oligothiphene 96 4-3.4 Dicyanovinylene (DCV) oligothiophenes 97 4-4 Oligothiophene小分子材料基本光電與元件特性 98 4-4.1 DTPTtDCV 98 4-4.1.1 DTPTtDCV光物理性質 99 4-4.1.1.1 紫外光-可見光吸收頻譜 99 4-4.1.1.2 光學係數 99 4-4.1.1.3 光電子頻譜 99 4-4.1.2 DTPTtDCV有機小分子太陽能電池 102 4-4-1.2.1 DTPTtDCV平面型異質接面結構元件 102 4-4-1.2.2 DTPTtDCV平面混合異質接面結構元件- PIN與IN結構 103 4-4-1.2.3 DTPTtDCV平面混合異質接面結構元件-改變混合層比例 104 4-4.2 DTtPBTCN與DTPTBTCN 111 4-4.2.1 DTtPBTCN與DTPTBTCN光物理性質 112 4-4.2.1.1 紫外光-可見光吸收頻譜 112 4-4.2.1.2 光學係數 112 4-4.2.1.3 光電子頻譜 112 4-4.2.2 DTtPBTCN有機小分子太陽能電池 115 4-4.2.3 DTPTBTCN有機小分子太陽能電池 118 4-5 結論 121 Chapter 5 有機光電元件之光學結構應用 123 5-1 有機光響應元件發展與簡介 123 5-1.1 紫外光波段有機光響應元件 123 5-1.2 可見光波段有機光響應元件 124 5-1.3 全頻譜有機光響應元件 124 5-2 具金屬微共振腔結構之有機光響應元件 125 5-2.1 全可見光頻譜有機光響應元件之光學模擬與製作 127 5-2.1.1 全可見光頻譜有機光響應元件之光學模擬 127 5-2.1.2 全可見光頻譜有機光響應元件之元件製作 130 5-2.2 特定波長區間有機光響應元件之光學模擬與製作 133 5-2.2.1 特定波長區間有機光響應元件之光學模擬 133 5-2.2.2 特定波長區間有機光響應元件之元件製作 135 5-3 光學奈米結構發展與簡介 137 5-3.1 Micro lenses 137 5-3.2 Buckling pattern 137 5-3.3 Wrinkles and deep folds 138 5-3.4 Silica array 138 5-4 自組裝有機奈米結構 139 5-4.1 NPB/Bphen/NPB wrinkle 139 5-4.1.1 大週期NPB/Bphen/NPB wrinkle 139 5-4.1.2 小週期NPB/Bphen/NPB wrinkle 143 5-4.2 PEDOT:PSS/NPB/TCTA wrinkle 147 5-4.2.1 大週期PEDOT:PSS/NPB/TCTA wrinkle 147 5-4.2.2 小週期PEDOT:PSS/NPB/TCTA wrinkle 153 5-4.3 TmPyPB/T3 wrinkle 155 5-4.3.1 TmPyPB/T3 single wrinkle 155 5-4.3.2 TmPyPB/T3 double wrinkle 161 5-4.4 Wrinkle照片與雷射圖形 164 5-5 具光學奈米結構之有機光電元件 165 5-5.1 Wrinkle表面應用於有機太陽能電池元件 165 5-5.2 Wrinkle表面應用於有機發光二極體 169 5-6 結論 173 Chapter 6 未來展望 174 本論文產出之相關期刊著作 175 參考文獻 176

    [1] Q. Schiermeier, J. Tollefson, T. Scully, A. Witze, O. Morton, Nature 2008, 454, 816.
    [2] M. A. Green, Physica E-Low-Dimensional Systems & Nanostructures 2002, 14, 11.
    [3] J. Kruger, Ecole Polytechnique Fédérale de Lausanne, Ph. D. Thesis, 2003.
    [4] N. R. E. Laboratory, http://www.nrel.gov/.
    [5] D. M. Chapin, C. S. Fuller, G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
    [6] D. E. Carlson, C. R. Wronski, Appl. Phys. Lett. 1976, 28, 671.
    [7] I. Repins, M. Contreras, Y. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. McCandless, R. Noufi, in 33th IEEE Photovoltaics Specialists Conference Record, 2008.
    [8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovoltaics 2009, 17, 320.
    [9] Y. Zhou, L. Ding, K. Shi, Y. Z. Dai, N. Ai, J. Wang, J. Pei, Adv. Mater. 2012, 10.1002/adma.201103927.
    [10] G. Dennler, A. J. Mozer, G. Juška, A. Pivrikas, R. Österbacka, A. Fuchsbauer, N. S. Sariciftci, Org. Electron. 2006, 7, 229.
    [11] B. Homa, M. Andersson, O. Inganäs, Org. Electron. 2009, 10, 501.
    [12] V. Kažukauskas, A. Arlauskas, M. Pranaitis, R. Lessmann, M. Riede, K. Leo, Opt. Mater. 2010, 32, 1676.
    [13] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    [14] N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier, M. Grätzel, Angew. Chem. Int. Ed. 2014, 53, 3151.
    [15] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
    [16] P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, A. K. Jen, Adv. Mater. 2014, 10.1002/adma.201400231.
    [17] A. K. Kyaw, D. H. Wang, V. Gupta, W. L. Leong, L. Ke, G. C. Bazan, A. J. Heeger, ACS Nano 2013, 7, 4569.
    [18] V. Gupta, A. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger, Sci Rep 2013, 3, 1965.
    [19] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat. Photonics 2012, 6, 591.
    [20] S. Glenis, G. Tourillon, F. Garnier, Thin Solid Films 1986, 139, 221.
    [21] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    [22] J. G. Xue, S. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 2004, 84, 3013.
    [23] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    [24] D. W. Zhao, P. Liu, X. W. Sun, S. T. Tan, L. Ke, A. K. K. Kyaw, Appl. Phys. Lett. 2009, 95, 153304.
    [25] W. Gaynor, G. F. Burkhard, M. D. McGehee, P. Peumans, Adv. Mater. 2011, 23, 2905.
    [26] L. L. Chang, H. W. A. Lademann, J. B. Bonekamp, K. Meerholz, A. J. Moule, Adv. Funct. Mater. 2011, 21, 1779.
    [27] J.-H. Chang, Y.-H. Chen, H.-W. Lin, Y.-T. Lin, H.-F. Meng, E.-C. Chen, Org. Electron. 2012, 13, 705.
    [28] J. Xue, B. P. Rand, S. Uchida, S. R. Forrest, Adv. Mater. 2005, 17, 66.
    [29] J. Hatano, N. Obata, S. Yamaguchi, T. Yasuda, Y. Matsuo, J. Mater. Chem. 2012, 22, 19258.
    [30] P. Dutta, W. Yang, W.-H. Lee, I. N. Kang, S.-H. Lee, J. Mater. Chem. 2012, 22, 10840.
    [31] G. D. Sharma, J. A. Mikroyannidis, R. Kurchania, K. R. J. Thomas, J. Mater. Chem. 2012, 22, 13986.
    [32] Y. S. Hsiao, W. T. Whang, S. C. Suen, J. Y. Shiu, C. P. Chen, Nanotechnology 2008, 19, 415603.
    [33] J. Jo, S.-I. Na, S.-S. Kim, T.-W. Lee, Y. Chung, S.-J. Kang, D. Vak, D.-Y. Kim, Adv. Funct. Mater. 2009, 19, 2398.
    [34] Y. Gao, Mater. Sci. Eng., R 2010, 68, 39.
    [35] P. G. Karagiannidis, N. Kalfagiannis, D. Georgiou, A. Laskarakis, N. A. Hastas, C. Pitsalidis, S. Logothetidis, J. Mater. Chem. 2012, 22, 14624.
    [36] M. D. Perez, C. Borek, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc. 2009, 131, 9281.
    [37] W. L. Leong, S. R. Cowan, A. J. Heeger, Adv Energy Mater 2011, 1, 517.
    [38] C. G. Shuttle, R. Hamilton, B. C. O'Regan, J. Nelson, J. R. Durrant, Proc Natl Acad Sci U S A 2010, 107, 16448.
    [39] C. K. Renshaw, C. W. Schlenker, M. E. Thompson, S. R. Forrest, Phys. Rev. B 2011, 84.
    [40] X. Li, W. C. Choy, L. Huo, F. Xie, W. E. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Adv. Mater. 2012, 24, 3046.
    [41] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.
    [42] G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. J. Brabec, Adv. Mater. 2008, 20, 579.
    [43] T. Ameri, G. Dennler, C. Lungenschmied, C. J. Brabec, Energy Environ. Sci. 2009, 2, 347.
    [44] H. GmbH, http://www.heliatek.com, 2013.
    [45] M. Chemical, http://www.m-kagaku.co.jp/index_en.htm, 2012.
    [46] M. Y. Chan, S. L. Lai, K. M. Lau, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 2006, 89, 163515.
    [47] H. Tsuji, K. Sato, Y. Sato, E. Nakamura, Chemistry, an Asian journal 2010, 5, 1294.
    [48] M. Hirade, C. Adachi, Appl. Phys. Lett. 2011, 99, 153302.
    [49] C. C. Chang, C. F. Lin, J. M. Chiou, T. H. Ho, Y. Tai, J. H. Lee, Y. F. Chen, J. K. Wang, L. C. Chen, K. H. Chen, Appl. Phys. Lett. 2010, 96, 263506.
    [50] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636.
    [51] H.-W. Lin, H.-W. Kang, Z.-Y. Huang, C.-W. Chen, Y.-H. Chen, L.-Y. Lin, F. Lin, K.-T. Wong, Org. Electron. 2012, 13, 1925.
    [52] B. E. Lassiter, G. Wei, S. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2011, 98, 243307.
    [53] M. T. Greiner, Z.-H. Lu, NPG Asia Materials 2013, 5, e55.
    [54] P. Peumans, V. Bulovic, S. R. Forrest, Appl. Phys. Lett. 2000, 76, 2650.
    [55] S.-W. Liu, C.-C. Lee, C.-F. Lin, J.-C. Huang, C.-T. Chen, J.-H. Lee, J. Mater. Chem. 2010, 20, 7800.
    [56] P. Peumans, S. Uchida, S. R. Forrest, Nature 2003, 425, 158.
    [57] S. W. Chiu, L. Y. Lin, H. W. Lin, Y. H. Chen, Z. Y. Huang, Y. T. Lin, F. Lin, Y. H. Liu, K. T. Wong, Chem. Commun. 2012, 48, 1857.
    [58] K. Liang, D. B. Mitzi, M. T. Prikas, Chem. Mater. 1998, 10, 403.
    [59] V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Burckstummer, E. V. Tulyakova, F. Wurthner, Adv. Energy Mater. 2011, 1, 888.
    [60] D. Y. Kim, G. Sarasqueta, F. So, Sol. Energy Mater. Sol. Cells 2009, 93, 1452.
    [61] J. Yu, N. Wang, Y. Zang, Y. Jiang, Sol. Energy Mater. Sol. Cells 2011, 95, 664.
    [62] G. D. Wei, X. Xiao, S. Y. Wang, K. Sun, K. J. Bergemann, M. E. Thompson, S. R. Forrest, ACS Nano 2012, 6, 972.
    [63] C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu, Y. Yang, Appl. Phys. Lett. 2005, 87, 241121.
    [64] V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Appl. Phys. Lett. 2006, 88, 073508.
    [65] A. Ojala, H. Bürckstümmer, J. Hwang, K. Graf, B. von Vacano, K. Meerholz, P. Erk, F. Würthner, J. Mater. Chem. 2012, 22, 4473.
    [66] K. Schulze, C. Uhrich, R. Schüppel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bäuerle, Adv. Mater. 2006, 18, 2872.
    [67] S. Wang, E. I. Mayo, M. D. Perez, L. Griffe, G. Wei, P. I. Djurovich, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 2009, 94, 233304.
    [68] C. Renshaw, C. Schlenker, M. Thompson, S. Forrest, Phys. Rev. B 2011, 84.
    [69] B. E. Lassiter, G. D. Wei, S. Y. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 2011, 98, 243307.
    [70] B. P. Rand, J. Li, J. G. Xue, R. J. Holmes, M. E. Thompson, S. R. Forrest, Adv. Mater. 2005, 17, 2714.
    [71] C. Falkenberg, C. Uhrich, S. Olthof, B. Maennig, M. K. Riede, K. Leo, J. Appl. Phys. 2008, 104, 034506.
    [72] K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Chem. Rev. 2007, 107, 1233.
    [73] Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Bredas, S. R. Marder, A. Kahn, B. Kippelen, Science 2012, 336, 327.
    [74] H. Jin, M. Tuomikoski, J. Hiltunen, P. Kopola, A. Maaninen, F. Pino, J. Phys. Chem. C 2009, 113, 16807.
    [75] Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, J. You, Y. Yang, Y. Chen, Adv. Energy Mater. 2011, 1, 771.
    [76] H. W. Lin, L. Y. Lin, Y. H. Chen, C. W. Chen, Y. T. Lin, S. W. Chiu, K. T. Wong, Chem. Commun. 2011, 47, 7872.
    [77] L. Y. Lin, Y. H. Chen, Z. Y. Huang, H. W. Lin, S. H. Chou, F. Lin, C. W. Chen, Y. H. Liu, K. T. Wong, J. Am. Chem. Soc. 2011, 133, 15822.
    [78] L. Y. Lin, C. W. Lu, W. C. Huang, Y. H. Chen, H. W. Lin, K. T. Wong, Org. Lett. 2011, 13, 4962.
    [79] P. L. Heremans, C. Falkenberg, C. Uhrich, B. Maennig, M. K. Riede, K. Leo, M. Muccini, E. A. Meulenkamp, 2008, 6999, 69990S.
    [80] A. K. Pandey, P. E. Shaw, I. D. W. Samuel, J.-M. Nunzi, Appl. Phys. Lett. 2009, 94, 103303.
    [81] D. Gupta, S. Mukhopadhyay, K. S. Narayan, Sol. Energy Mater. Sol. Cells 2010, 94, 1309.
    [82] P. Piromreun, H. Oh, Y. Shen, G. G. Malliaras, J. C. Scott, P. J. Brock, Appl. Phys. Lett. 2000, 77, 2403.
    [83] L. Y. Lin, Y. H. Chen, Z. Y. Huang, H. W. Lin, S. H. Chou, F. Lin, C. W. Chen, Y. H. Liu, K. T. Wong, J. Am. Chem. Soc. 2011, 133, 15822.
    [84] D. Gupta, M. Bag, K. S. Narayan, Appl. Phys. Lett. 2008, 92, 093301.
    [85] A. Kumar, G. Li, Z. Hong, Y. Yang, Nanotechnology 2009, 20, 165202.
    [86] G. Li, V. Shrotriya, J. S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
    [87] M. O. Reese, M. S. White, G. Rumbles, D. S. Ginley, S. E. Shaheen, Appl. Phys. Lett. 2008, 92, 053307.
    [88] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, Y. Yang, Appl. Phys. Lett. 2006, 88, 073508.
    [89] S. R. Cowan, R. A. Street, S. N. Cho, A. J. Heeger, Phys. Rev. B 2011, 83, 035205.
    [90] H. Burckstummer, E. V. Tulyakova, M. Deppisch, M. R. Lenze, N. M. Kronenberg, M. Gsanger, M. Stolte, K. Meerholz, F. Wurthner, Angew. Chem. Int. Ed. Engl. 2011, 50, 11628.
    [91] N. M. Kronenberg, V. Steinmann, H. Burckstummer, J. Hwang, D. Hertel, F. Wurthner, K. Meerholz, Adv. Mater. 2010, 22, 4193.
    [92] V. Steinmann, N. M. Kronenberg, M. R. Lenze, S. M. Graf, D. Hertel, K. Meerholz, H. Bürckstümmer, E. V. Tulyakova, F. Würthner, Adv. Energy Mater. 2011, 1, 888.
    [93] H. W. Lin, L. Y. Lin, Y. H. Chen, C. W. Chen, Y. T. Lin, S. W. Chiu, K. T. Wong, Chem Commun (Camb) 2011, 47, 7872.
    [94] Y. H. Chen, L. Y. Lin, C. W. Lu, F. Lin, Z. Y. Huang, H. W. Lin, P. H. Wang, Y. H. Liu, K. T. Wong, J. Wen, D. J. Miller, S. B. Darling, J. Am. Chem. Soc. 2012, 134, 13616.
    [95] M. Hirade, T. Yasuda, C. Adachi, J. Phys. Chem. C 2013, 117, 4986.
    [96] J. W. Choi, C.-H. Kim, J. Pison, A. Oyedele, D. Tondelier, A. Leliège, E. Kirchner, P. Blanchard, J. Roncali, B. Geffroy, RSC Advances 2014, 4, 5236.
    [97] J. Kim, H.-S. Shim, H. Lee, M.-S. Choi, J.-J. Kim, Y. Seo, J. Phys. Chem. C 2014, 118, 11559.
    [98] H. C. Ting, Y. H. Chen, L. Y. Lin, S. H. Chou, Y. H. Liu, H. W. Lin, K. T. Wong, ChemSusChem 2014, 7, 457.
    [99] M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W. M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, K. Leo, Adv. Funct. Mater. 2011, 21, 3019.
    [100] H. S. Shim, S. Y. Kim, J. W. Kim, T. M. Kim, C. H. Lee, J. J. Kim, Appl. Phys. Lett. 2013, 102, 203903.
    [101] I. Kim, G. E. Jabbour, Synth. Met. 2012, 162, 102.
    [102] P. López Varo, J. A. Jiménez Tejada, J. A. López Villanueva, J. E. Carceller, M. J. Deen, Org. Electron. 2012, 13, 1700.
    [103] N. Noma, T. Tsuzuki, Y. Shirota, Adv. Mater. 1995, 7, 7.
    [104] J. Sakai, T. Taima, K. Saito, Org. Electron. 2008, 9, 582.
    [105] P. Liu, Q. Li, M. Huang, W. Pan, W. Deng, Appl. Phys. Lett. 2006, 89, 213501.
    [106] L. Guan, J. Wang, J. Huang, C. Jiang, M. La, P. Liu, W. Deng, Synth. Commun. 2011, 41, 3662.
    [107] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke, C. Körner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiß, C. Uhrich, M. Pfeiffer, P. Bäuerle, Adv. Funct. Mater. 2011, 21, 897.
    [108] D. Wynands, M. Levichkova, K. Leo, C. Uhrich, G. Schwartz, D. Hildebrandt, M. Pfeiffer, M. Riede, Appl. Phys. Lett. 2010, 97, 073503.
    [109] R. Fitzner, E. Mena-Osteritz, A. Mishra, G. Schulz, E. Reinold, M. Weil, C. Korner, H. Ziehlke, C. Elschner, K. Leo, M. Riede, M. Pfeiffer, C. Uhrich, P. Bauerle, J. Am. Chem. Soc. 2012, 134, 11064.
    [110] Z. Chen, B. Cotterell, W. Wang, E. Guenther, S. J. Chua, Thin Solid Films 2001, 394, 202.
    [111] K. H. An, B. O’Connor, K. P. Pipe, M. Shtein, Org. Electron. 2009, 10, 1152.
    [112] J. B. Wang, W. L. Li, B. Chu, L. L. Chen, G. Zhang, Z. S. Su, Y. R. Chen, D. F. Yang, J. Z. Zhu, S. H. Wu, Org. Electron. 2010, 11, 1301.
    [113] D. Ray, K. L. Narasimhan, Appl. Phys. Lett. 2007, 91, 093516.
    [114] G. Zhang, W. Li, B. Chu, Z. Su, D. Yang, F. Yan, Y. Chen, D. Zhang, L. Han, J. Wang, Org. Electron. 2009, 10, 352.
    [115] S.-h. Wu, W.-l. Li, B. Chu, C. S. Lee, Z.-s. Su, J.-b. Wang, F. Yan, G. Zhang, Z.-z. Hu, Z.-q. Zhang, Appl. Phys. Lett. 2010, 96, 093302.
    [116] S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, O. Hayden, Nano Lett. 2009, 9, 980.
    [117] M. Ramuz, L. Bürgi, C. Winnewisser, P. Seitz, Org. Electron. 2008, 9, 369.
    [118] K. S. Nalwa, Y. Cai, A. L. Thoeming, J. Shinar, R. Shinar, S. Chaudhary, Adv. Mater. 2010, 22, 4157.
    [119] M. Binda, T. Agostinelli, M. Caironi, D. Natali, M. Sampietro, L. Beverina, R. Ruffo, F. Silvestri, Org. Electron. 2009, 10, 1314.
    [120] M. Binda, A. Iacchetti, D. Natali, L. Beverina, M. Sassi, M. Sampietro, Appl. Phys. Lett. 2011, 98, 073303.
    [121] Y. Yao, Y. Liang, V. Shrotriya, S. Xiao, L. Yu, Y. Yang, Adv. Mater. 2007, 19, 3979.
    [122] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, A. J. Heeger, Science 2009, 325, 1665.
    [123] B. D. Aleksandra, F. Torsten, L. Karl, J. Opt. A: Pure Appl. Opt. 2000, 2, 458.
    [124] J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2008, 8, 689.
    [125] B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, M. Shtein, Appl. Phys. Lett. 2008, 93, 223304.
    [126] H. Bässler, Phys. Status Solidi B 1993, 175, 15.
    [127] T. J. Savenije, J. E. Kroeze, X. Yang, J. Loos, Adv. Funct. Mater. 2005, 15, 1260.
    [128] J. Ajuria, I. Etxebarria, E. Azaceta, R. Tena-Zaera, N. Fernandez-Montcada, E. Palomares, R. Pacios, PCCP 2011, 13, 20871.
    [129] J. Meiss, M. K. Riede, K. Leo, Appl. Phys. Lett. 2009, 94, 013303.
    [130] J. Meiss, M. Furno, S. Pfuetzner, K. Leo, M. Riede, J. Appl. Phys. 2010, 107, 053117.
    [131] B. O’Connor, K. H. An, K. P. Pipe, Y. Zhao, M. Shtein, Appl. Phys. Lett. 2006, 89, 233502.
    [132] J. Meiss, K. Leo, M. K. Riede, C. Uhrich, W.-M. Gnehr, S. Sonntag, M. Pfeiffer, Appl. Phys. Lett. 2009, 95, 213306.
    [133] S. R. Forrest, Nature 2004, 428, 911.
    [134] L. A. A. Pettersson, L. S. Roman, O. Inganas, J. Appl. Phys. 1999, 86, 487.
    [135] W. Yu, L. Shen, Y. Long, P. Shen, W. Guo, W. Chen, S. Ruan, Org. Electron. 2014, 15, 470.
    [136] B. Conings, L. Baeten, C. De Dobbelaere, J. D'Haen, J. Manca, H. G. Boyen, Adv. Mater. 2014, 26, 2041.
    [137] R. Fitzner, E. Reinold, A. Mishra, E. Mena-Osteritz, H. Ziehlke, C. Korner, K. Leo, M. Riede, M. Weil, O. Tsaryova, A. Weiss, C. Uhrich, M. Pfeiffer, P. Bauerle, Adv. Funct. Mater. 2011, 21, 897.
    [138] A. Chutinan, K. Ishihara, T. Asano, M. Fujita, S. Noda, Org. Electron. 2005, 6, 3.
    [139] S. Chen, H. S. Kwok, Opt. Express 2010, 18, 37.
    [140] K. Tvingstedt, S. Dal Zilio, O. Inganas, M. Tormen, Opt. Express 2008, 16, 21608.
    [141] W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Nat. Photon. 2010, 4, 222.
    [142] J. B. Kim, P. Kim, N. C. Pe´gard, S. J. Oh, C. R. Kagan, J. W. Fleischer, H. A. Stone, Y. L. Loo, Nat. Photon. 2012, 6, 327.
    [143] W. H. Koo, W. Youn, P. Zhu, X.-H. Li, N. Tansu, F. So, Adv. Funct. Mater. 2012, 22, 3454.
    [144] B. W. D’Andrade, S. R. Forrest, A. B. Chwang, Appl. Phys. Lett. 2003, 83, 3858.
    [145] H.-C. Yeh, H.-F. Meng, H.-W. Lin, T.-C. Chao, M.-R. Tseng, H.-W. Zan, Org. Electron. 2012, 13, 914.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE