簡易檢索 / 詳目顯示

研究生: 劉軒帆
Liou, Shiuan-Fan
論文名稱: Co-crumpling Model and Simulations for One-dimensional Crumpled Membranes
混合揉皺的模型和一維揉皺的模擬
指導教授: 洪在明
Hong, Tzay-Ming
口試委員: 陳培亮
蕭百沂
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 53
中文關鍵詞: 揉皺一維模擬
外文關鍵詞: crumpling, co-crumpling, one-dimension
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們對三維單張紙的揉皺了解很多,我們接著兩張紙的揉皺很感興趣。尤其是兩種彎曲係數差很多的材料一起揉。從模擬上我們發現混合揉皺的半徑和外力也存在冪次關係,而且其平均皺折的長度和單張揉的相差甚遠,因此,我們提出了一個「棋盤」模型。它不僅能解釋其冪次關係,還能給出對的平均皺折隨變曲係數不同所改變的趨勢。除此之外,由這簡單的模型還能得到平均皺折和體密度倒數的正比關係,此結果與模擬上所得到的結果完全吻合。
    除了三維揉皺,我們也做了一維揉皺的模擬,並發現其高度和外力關係可分為三個區間。這三個區間分別對應到內部結構的三種狀態。三角晶格面的平均角度是很好的有序參數,用來幫助我們區別前兩個區間。在第二個區間,存在冪次關係,其指數約為1/3,稍大於在三維發現的值。藉由對三個區間的觀察,我們發現造成一維的冪次關係和三維的機制是完全不同的。並提出一個「橢球」模型來解釋冪次關係,並得到完全一致的次方值。


    Our research group has been interested at the ubiquitous, yet still poorly understood
    phenomenon of crumpling. In the past we have focused on designing high-pressure chambers
    for the purpose of crumpling thin sheets under di erent magnitudes of ambient pressure. In
    this thesis I shall try to attack the problem from a di erent front; that is, analytically and
    by Molecular Dynamics (MD) simulations. I also want to ask (1) how these mechanical and
    statistical properties derived from experiments come about? and (2) how they are a ected
    when two sheets of di erent composites are crumpled at the same time. Analytically, I
    can show that, within a simple \chessboard" model, how the average ridge lengths for each
    sheets evolve with the compaction, for which the average ridge length is positively related to
    bending modulus and inversely proportional to the density under the knowledge background
    from simulation.
    These results are consistent with the simulation results. One big advantage of studying
    MD is that we can get a clear physical picture for how the potential energy is allotted. We
    nd that, during cocumpling, the sheet with larger average facet takes the major blunt of
    external force and thus absorbs more energy in our simulations. In contrast to crumpling
    under an ambient pressure, I also check if the scaling relation persists when I crush the sheet
    unidirectionally. Unlike its 3-D counterpart, the mechanical properties of a 1-D crumpled
    ball depend more sensitively on the initial condition. More speci cally, the compaction of
    the precrumpled ball via a 3-D pressure a ects its later resistance in 1-D.
    We found that the force versus height relation consisted of three regions, similar to
    the 3-D case. Although the ball exhibits the scaling law in 3-D, the law does not exist
    when we change the nature of force to 1-D. We call this stage the rst region. When the
    height decreases, the scaling law appears and the power is between 0.25 to 0.35, somewhat
    larger than the exponent in 3-D for the same parameters of sheet. We reported possible
    connection between these regions and the change of inner structure. With the knowledge of
    these features, we considered an ellipsoid model that can predict both the power law and the
    right magnitude of exponent. Furthermore, the model revealed that the density is a better
    parameter than the height in the second region for the mechanical behavior. In the end, we
    investigated the density distribution of layers and found two kinds of distribution, which are
    dissimilar to that in 3-D crumpling.
    The nal part is a summary of conclusions and discussions on my previous e ort to
    investigate the quantized conductance of threadlike mercury. This was initially designed to
    combine my experience with the classic drop-breakup problem with the expertise of my labmate
    on quantized conductance in quantum point contacts. We hope to utilize the micro-size
    neck of mercury to investigate the correctness of report in the literature that the quantized
    conductance can persist in room temperature and pressure for liquid metal.

    1 Introduction 1 2 Elastic Membrane Theory 4 2.1 Energy of Elastic Membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Power-Law Relation Between Energy and Ridge Length . . . . . . . . . . . . 6 3 Molecular Dynamics Simulation 9 3.1 Concept of Molecular Dynamics Simulation . . . . . . . . . . . . . . . . . . . 9 3.2 Molecular Dynamics Simulation Model . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.2 Stretching Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.3 Bending Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.4 Drag Force and Perturbation . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.5 Constraint Force by Walls . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.1 Dimensionless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 Results and Discussions 22 4.1 Co-crumpled Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Scaling Relation in 1D crumpling . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Connection between H-F Regions and Inner Structure Stages . . . . . 29 4.2.2 Properties for Power and Ellipsoid Model . . . . . . . . . . . . . . 32 5 Conclusion 41 6 Quantized Conductance of Thread-like Mercury 43 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Measurement and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.1 Electric circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2.2 Movement Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.2.3 Data Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2.4 Image Recording . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] E. Sultan and A. Boudaoud, Phys. Rev. Lett. 96, 136103 (2006).
    [2] G. A. Vliegenthart and G. Gompper, Nat Mater 5, 216 (2006).
    [3] Y. C. Lin, Y. L. Wang, Y. Liu, and T. M. Hong, Phys. Rev. Lett. 101,
    125504 (2008).
    [4] T. Tallinen, Numerical Studies on Membrane Crumpling, PhD thesis,
    University of Jyvaskyla, Finland, 2009.
    [5] W. Bai, Y.-C. Lin, T.-K. Hou, and T.-M. Hong, Phys. Rev. E 82, 066112
    (2010).
    [6] T. A. Witten, Rev. Mod. Phys. 79, 643 (2007).
    [7] A. Wood, Physica A 313, 83 (2002).
    [8] C.-C. Lo, Membrane crumpling with molecular dynamical simulation,
    Master's thesis, National Tsing Hua University, 2012.
    [9] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 2nd (Pergamon,
    Oxford, 1970).
    [10] J. L. Costa-Kramer et al., Phys. Rev. B 55, 5416 (1997).
    53

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE