研究生: |
彭振賢 Cheng-Hsien Peng |
---|---|
論文名稱: |
應用風扇噴流衝擊與水冷卻技術於各種熱移除模組之散熱最佳化研究 Thermal Optimization for Various Heat Removal Modules with Fan-Jet Impingement and Water Cooling Techniques |
指導教授: |
洪英輝
Ying-Huei Hung 傅建中 Chien-Chung Fu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 578 |
中文關鍵詞: | 熱電致冷器 、散熱座 、冷板 |
外文關鍵詞: | TEC, heat sink, cold plate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In the present study, a series of theoretical and experimental studies on the fluid flow friction and heat transfer characteristics of four types of heat removal device employed in electronics cooling have been conducted. These four types of heat removal device include (1) heat sink module with fan-jet impingement cooling, (2) heat sink/TEC module with fan-jet impingement cooling, (3) cold plate module with water cooling, and (4) cold plate/TEC module with water cooling. Relevant influencing parameters for heat sink and heat sink/TEC modules with fan-jet impingement cooling are the isoflux Grashof number (GrH), ratio of fan/heat sink gap to characteristic length of heat sink base (s/Lb), fan jet Reynolds number (Rein) and input current of TEC (I). The ranges of parameters studied are GrH =3.94x1010~1.54x1011, s/Lb=0~0.38, Rein=4060~7152 and I=2~10A. Relevant influencing parameters for cold plate and cold plate/TEC modules with water cooling are the isoflux Grashof number (GrH), Reynolds number of cold plate (Recp) and input current of TEC (I). The ranges of parameters studied are GrH =2606~5538, Recp=256~3205 and I=2~10A. Their effects on fluid flow friction and heat transfer characteristics have been systematically explored.
For fan-jet impingement cooling, the flow rate impinging onto heat sink decreases with increasing fan/heat sink gap; while the flow rate of by pass increases with increasing fan/heat sink gap. New correlations for evaluating the overall pressure drop, the effective friction factor (fe) and heat transfer performance factor (j) of cold plate module with water cooling are proposed and the ratio of j/fe for the present cold plate with water cooling is kept at a constant, say 0.078. The local effective heat transfer coefficients for heat sink and heat sink/TEC modules with fan-jet impingement cooling are achieved the uniform distributions; and those for cold plate and cold plate/TEC modules with water cooling result in the uniform distributions in the spanwise direction; while, they gradually decrease along the streamwise direction. Similar trends can be found for local effective Nusselt number, local external thermal conductance and local total thermal conductance. The local and average effective heat transfer coefficients for heat sink and heat sink/TEC modules increase with increasing fan velocity or decreasing fan/heat sink gap; while they are independent of convective heat load; and those for cold plate and cold plate/TEC modules increase with increasing mass flow rate, but independent of convective heat load. Similar trends can be found for local and average effective Nusselt number and external thermal conductance. The average total thermal resistances of heat sink and cold plate modules are dominated by the average external thermal resistance. The effects of average external thermal resistance, module heat load and input current of TEC on local and average total thermal resistance of heat sink/TEC and cold plate/TEC modules are significant. As compared with average total thermal resistance of heat sink and cold plate modules, the maximum reduction of average total thermal resistance for heat sink/TEC and cold plate/TEC modules are to 67% and 76%, respectively; the maximum heat dissipation for cold plate/TEC module is 72W, which is higher than 29 W for heat sink/TEC module, in the present parametric ranges observed. In addition, new experimental correlations as well as the equations derived from the RSM models for local and average effective heat transfer coefficients, Nusselt number, external thermal resistance and total thermal resistance in terms of relevant influencing parameters for four types of heat removal device studied have been presented.
Furthermore, an effective semi-empirical method, which combines thermal network models and empirical correlations, has been successfully established and presented for exploring the following three types of thermal performance improvements with the installation of TEC in the heat removal devices: (1) maximum applicable external thermal resistance for given heat load and maximum chip temperature rise, (2) maximum heat load enhancement for given maximum chip temperature rise and external thermal resistance, and (3) maximum chip temperature reduction for given heat load and external thermal resistance. New correlations for evaluating the design criteria for the validity of using TEC on thermal performance improvements have been proposed. Finally, in order to meet several design objectives and multi-constraints simultaneously and effectively, a systematical design optimization method so-called "RSM-SQP" has been successfully presented and applied to the optimal designs for the present four types of heat removal device under multi-constraints.
在本論文研究中,針對四種熱移除模組應用於電子冷卻上之流阻與熱傳特性作一系列理論與實驗的探討。這四種熱移除模組包含:(一)在風扇噴流衝擊下之散熱座模組(二)在風扇噴流衝擊下之散熱座結合熱電致冷器模組(三)在水冷卻下之冷板模組(四)在水冷卻下之冷板結合熱電致冷器模組。在風扇噴流衝擊下之散熱座或散熱座結合熱電致冷器模組的熱流性能之相關影響參數分別如下:穩態葛雷雪夫數(GrH)、風扇與散熱座之間隙與散熱座底部特徵長度之比值(s/Lb)、風扇噴流雷諾數(Rein)與熱電致冷器輸入電流(I),這些參數的探討範圍是GrH=3.94x1010~ 1.54x1011,s/Lb=0~0.38,Rein=4060~7152 與 I=2~10A。在水冷卻下之冷板或冷板結合熱電致冷器模組的熱流性能之相關影響參數分別如下:穩態葛雷雪夫數(GrH)、冷板雷諾數(Recp)與熱電致冷器輸入電流(I),這些參數的探討範圍是GrH =2606~5538,Recp=256~3205 與 I=2~10A。在研究中亦針對上述之參數在四種熱移除模組之流阻與熱傳特性上的影響作有系統地探討。
在風扇噴流衝擊冷卻部分,空氣衝擊入散熱座的流量會隨著風扇與散熱座的間隙增加而遞減,而由間隙四周流失的流量則會隨著間隙增加而遞增。在水冷卻之冷板模組研究中,本文針對其總壓降、等效摩擦因子(fe)與熱傳效能因子(j)提出了相關之新的經驗公式;在本研究中之j/fe比值則維持在0.078。局部等效熱傳係數在風扇噴流衝擊冷卻下之散熱座或散熱座結合熱電致冷器模組是呈現均勻分佈;而在水冷卻下之冷板或冷板結合熱電致冷器模組局部等效熱傳係數則是在垂直流體流動方向呈現均勻分佈,而在流體流動方向呈現遞減趨勢。在研究中亦發現在局部等效紐塞數、局部外界熱導與局部總熱導也有相同的分佈趨勢。局部和平均等效熱傳係數在風扇噴流衝擊冷卻下之散熱座或散熱座結合熱電致冷器模組會隨著風扇流速增加或是風散與散熱座的間隙減少而增加,但是與對流熱通量無關;而在水冷卻下之冷板或冷板結合熱電致冷器模組局部和平均等效熱傳係數則會隨著流體質量流率增加而增加,但是與對流熱通量無關。在研究中亦發現局部和平均等效紐塞數以及局部和平均外界熱導變化也是有相同的趨勢。對於散熱座與冷板模組之平均總熱阻是受平均外界熱阻所主導;然而對散熱座結合熱電致冷器模組與冷板結合熱電致冷器模組而言,外界平均熱阻、模組總散熱量與熱電致冷器輸入電流都是影響其平均總熱阻之重要參數。相較於散熱座模組之散熱性能,散熱座結合熱電致冷器模組最多可降低平均總熱阻達67%,而其模組最大散熱量可達29瓦;而冷板結合熱電致冷器模組相較於冷板模組,其散熱性能最多可降低平均總熱阻達76%,而模組最大散熱量則達72瓦。另外,本研究亦針對此四種散熱模組之平均等效熱傳係數、平均等效紐塞數、平均外界熱阻與平均總熱阻分別提出了新的實驗經驗公式以及新的反應曲面公式。
本研究中進一步地建立一個結合熱網路理論模型及經驗公式的半經驗方法來評估在下列三種散熱型態下散熱模組中加入熱電致冷器之熱傳性能增益效果:(一)已知模組總散熱量與最大晶片溫升之最大可應用之外界熱阻,(二)已知最大晶片溫升與外界熱阻之最大模組總散熱量,及(三)已知模組總散熱量與外界熱阻之最大晶片溫降。更值得一提的乃是在研究中針對此三種散熱型態分別提出了經驗公式來界定使用熱電致冷器而能有效提升模組熱傳效能之設計範圍。最後,本研究更成功地建立了一套有效且系統化之多設計目標與多限制條件下的最佳化方法(RSM-SQP),來針對此四種散熱模組做一系列的散熱最佳化設計探討。
[1] Kiper, A., 1984, “Impinging Water Jet Cooling of VLSI Circuits,” Int. Comm. Heat Transfer, 11, pp.517-526.
[2] Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC Press LLC, Boca Raton, FL.
[3] Kraus, A. D. and Bar-Cohen, A., 1983, Thermal Analysis and Control of Electronic Equipment, Hemisphere Publishing Corporation, Washington, USA.
[4] Mansuria, M. S. and Kamath, V., 1994, “Design Optimization of a High Performance Heat Sink/Fan Assembly,” Proc. ASME, HTD, 292, pp.95-103.
[5] Wirtz, R.A., Sohal, R., and Wang, H., 1997, “Thermal Performance of Pin-Fin Fan-Sink Assemblies,” Journal of Electronic Packaging, 119, pp.26-31.
[6] Zheng, N. and Wirtz, R. A., 1999, “Cylindrical Pin-fin Fan-sink Heat Transfer and Pressure Drop Correlations,” AJTE99-6197, 5th ASME/JSME Joint Thermal Engineering Conference, San Diego, USA , March 15-19, pp.1-6.
[7] Bar-Cohen, A. and Iyengar M., 2002, “Design and Optimization of Air Cooled Heat Sinks for Sustainable Development,” Proc. Int. Conf. Thermes, Santa Fe, NM, January 13-16, pp.5-23.
[8] Lin, S. C. and Chou, C. A., 2004, “Blockage Effect of Axial-Flow Fans Applied on Heat Sink Assembly,” Applied Thermal Engineering, 24, pp. 2375-2389.
[9] Lin, S. C., Huang, C. L., and Jan, H. B., 1999, “The Numerical and Experimental Analysis of Axial-flow Fans,” The AASRC Aeronautics and Astronautics Conference, Taiwan, pp. 107–117.
[10] Lin, S. C. and Huang, C. L., 2001, “The Study of a Small Centrifugal Fan for Notebook Computer, ” Journal of the Chinese Society of Mechanical Engineers, 22, pp. 421–431.
[11] Lin, S. C. and Huang, C. L., 2002, “An Integrated Experimental and Numerical Study of Forward-curved Centrifugal Fan,” Experimental Thermal and Fluid Science Journal, 26, pp. 421–434.
[12] Wallis, R. A., 1983, Axial Flow Fans and Ducts, John Wiley & Sons, New York, USA.
[13] Eck, B.,1975, Fans, Pergamon Press, New York, USA.
[14] Kraus, A. D., 1961, “Efficiency of the Cold Plate Heat Exchanger,” Proceedings National Aeronautical Electronic Conference, Dayton, Ohio, USA, p. 381.
[15] Kraus, A. D., 1962, “Optimization of the Cold Plate Heat Exchanger,” Proceedings National Aeronautical Electronic Conference, Dayton, Ohio, USA, p. 78.
[16] Kays, W. M., 1960, “Basic Heat Transfer and Flow Friction Characteristics of Six High Performance Heat Transfer Surfaces,” J. Eng. Power, 82, pp.27-32.
[17] Kern, D. Q. and Kraus, A. D., 1972, Extended Surface Heat Transfer, McGraw-Hill Book Company, New York, USA.
[18] Pieper, R. J. and Kraus, A. D., 1995, "Cold Plate with Asymmetric Heat Loading Part I - The Single Stack," In Advances in Electronic Packaging, EEP-10-2, ASME, New York, pp.865-870.
[19] Pieper, R. J. and Kraus, A. D., 1995, "Cold Plate with Asymmetric Heat Loading Part I - The Double Stack," In Advances in Electronic Packaging, EEP-10-2, ASME, New York, pp.871-876.
[20] Kays, W. M. and London, A. L., 1964/1984, Compact Heat Exchangers, 2nd/3rd ed., McGraw-Hill, New York, USA.
[21] LaHaye, P. G., Neugebauer, F. J., and Sakhuja, R. K., 1974, "A Generalized Prediction of Heat Transfer Surfaces," ASME J. Heat Transfer, 96, pp.511-517.
[22] Kraus, A. D., 1985, User's Manual for Computer Packages (FINEFF, FINEVA, FLUIDFLO, MATRIX, CONDTUBE, PLATES, TUBES, CLDPLT, TASS, and TRAN), InterCept Software, CA, USA.
[23] Fang, C. J., Wu, T. Y., Chen, P. L., Chang, S. F., and Hung, Y. H., 2005, "Thermal Computer-Aided Design for Compact Cold Plates," Journal of the Chinese Society of Mechanical Engineers, 26(1), pp.11-18.
[24] Kuo, C. Y., Chen, H. T., Chen, P. L., and Hung, Y. H., 2004, “Real-Time Animated Thermal CAD System for 3-D Multilayer Structure Integrated with Compact Cold Plate,” ITHERM 2004, Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp.685-692, Las Vegas, NV, USA, June 1-4.
[25] Hung, Y. H. and Chun, Y. H., 1994, "Thermal Performance Analysis of Cold Plates for Multilayer Structures with Arbitrary Heating Loads," In Heat Transfer in Electronic System, HTD-292, ASME, New York, pp.137-144.
[26] Hung, Y. H., Chen, Y. Y., and Liu, C. Y., 1999, “Thermal CAD Package for Multilayer Printed Circuit Boards Integrated with Two-Stack Cold Plate,” In Advances in Electronic Packaging 1999, EEP-26-2, pp.2177-2184.
[27] Ye, Q. L., Liu, L. K., Liu, C. Y., and Hung, Y. H., 2002, “Multimedia Thermal CAD System for Electronics Multilayer Structure with Compact Cold Plate,” 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, USA, May 29-June 1.
[28] Chu, R. C., Hwang, U. P. and Simons, R. E., 1982, “Conduction Cooling for an LSI Package: a One-Dimensional Approach,” IBM J. Res. Dev., 26, pp.45-54.
[29] Bar-Cohen, A., 1987, "Thermal Management of Air- and Liquid-Cooled Multichip Modules," IEEE CHMT Transactions, CHMT-10/2, pp.159-175.
[30] Lee, T. Y. T., Andrews, J. Chow, P., and Saums, D., 1992, “Compact Liquid Cooling. System for Small Moveable Electronic Equipment,” IEEE Eighth SEMI-THERM Symposium, pp.30-36.
[31] Vogel, M. R., 1995, “Liquid Cooling Performance for a 3-D Multichip Module and Miniature Heat Sink,” IEEE Transactions on Components Hybrids and Manufacturing Technology, 18, pp.68-73.
[32] Zhang, H. Y., Pinjala, D., Joshi, Y. K., Wong T. N., and Toh K. C., 2003, “Thermal Modeling and Design of Liquid Cooled Heat Sinks assembled with Flip Chip Ball Gird Array Packages,” IEEE Electronic Components and Technology Conference, New Orleans, Louisiana, USA, May 27-30, pp.431-437.
[33] Ioffe, A. F., 1957, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, London.
[34] Kraus, A. D., 1965, Cooling Electronic Equipment, Prentice-Hall, New York, USA.
[35] Simons R. E., 1967, “Thermal Conditioning System for an Optical Data Link,” IBM Technical Report No. 00.1628-1, Poughkeepsie, NY, USA.
[36] Chu, R. C., Seely, J. H., and Simons, R. E., 1968, “Design of a Modular Thermoelectric Cooling System for Special Circuit Packages,” Proceedings of NEPCON Conference, Anaheim, CA, USA, February 21-25.
[37] Goldsmid, H. J., 1985, Electronic Refrigeration, Pion Limited, London.
[38] Buist, R. J., 1980, “Universal Thermoelectric Design Curves,” 15th Intersociety Energy Conversion Engineering Conference, Seattle, Washington, USA, August 18-22.
[39] Simons, R. E. and Chu, R. C., 2000, “Application of Thermoelectric Cooling to Electronic Equipment: A Review and Analysis,” 16th IEEE SEMI-THERM Symposium, San Jose, CA, USA, March 21-23.
[40] Simons, R. E., Ellsworth, M. J., and Chu, R. C., 2003, “An Assessment of Module Cooling Enhancement with Thermoelectric Coolers,” IMECE2003-42239, Proceedings of IMECE’03, Washington, D. C., USA, Nov. 15-21.
[41] Solbrekken, G. L., Yazawa, K., and Bar-Cohen, A., 2003, “Chip Level Refrigeration of Portable Electronic Equipment Using Thermoelectric Devices,” IPACK2003-35305, Proceedings of InterPack 2003, ASME InterPACK’03, , Maui, Hawaii, USA, July 6-11.
[42] Bierschenk, J. and Johnson, D. 2004, “Extending the Limits of Air Cooling with Thermoelectrically Enhanced Heat Sink,” Proceedings of ITHERM 2004, pp.679-684, Las Vegas, USA, June 1-4.
[43] Sauciuc, I., Erturk, H., Chrysler, G., Bala, V., and Mahajan, R., 2005, “Thermal Devices ntegrated with Thermoelectric Modules with Applications to CPU Cooling,” IPACK2005-73243, Proceedings of IPACK 2005, ASME InterPACK’05, San Francisco, CA, USA, July 17-22.
[44] Sauciuc, I., Prasher, R., Chang, J. Y., Erturk, H., Chrysler, G., Chiu, C. P., and Mahajan, R., 2005, “Thermal Performance and Key Challenges for Future CPU Cooling Technologies,” IPACK2005-73242, Proceedings of IPACK 2005, ASME InterPACK’05, San Francisco, CA, USA, July 17-22.
[45] Vandersande, J. and Fleurial, J., 1996, “Thermal Management of Power Electronics Using Thermoelectric Coolers,” Proceeding of the 15th International Conference on Thermoelectrics, Pasadena, CA; USA, March 26-29, pp.252-255
[46] Huang, B. J., Chin C. J., and Duang, C. L., 2000, “A Design Method of Thermoelectric Cooler,” International Journal of Refrigeration, 23, pp.208-218.
[47] Shi, P., Wong, S., Tan, Y. M., Sunappan, V., Fan, W., Chua, K. M., Freeman, B., and Jiang, H., 2005, ”Thermal Simultation and Experimental Validation for TEC Design,” IPACK2005-73309, Proceedings of InterPACK’05, International Electronic Packaging Technical Conference and Exhibition, San Francisco, USA, July 17-22.
[48] Robert, A. and Solbrekken, G. L., 2005, ”An Improved Optimization Approach for Thermoelectric Refrigeration Applied to Portable Electronic Equiment,” IPACK2005-73190, Proceedings of InterPACK’05, International Electronic Packaging Technical Conference and Exhibition, San Francisco, USA, July 17-22.
[49] Vanderplaats, G. N., 1993, Numerical Optimization Techniques for Engineering Design, McGraw-Hill, Singapore.
[50] Wu, C. F. and Hamada, M., 2000, Experiments – Planning, Analysis, and Parameter Design Optimization, John Wiley & Sons, New York, USA.
[51] Belegundu, A. D. and Chandrupatla, T. R., 1999, Optimization Concepts and Applications in Engineering, Prentice Hall, New Jersey, USA.
[52] Lee, S., 1995, “Optimum Design and Selection of Heat Sinks,” 11th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, California, Feb. 7-9, pp. 48-54.
[53] Constans, E. W., Belegundu, A. D., and Kulkarni, A. K., 1994, “Optimization of a Pin-Fin Sink: A Design Tool,” 1994 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, Nov. 6-11, EEP-9, pp. 25-32.
[54] Azer, K. and Mandrone, C. D., 1994, “Effect of Pin Fin Density of the Thermal Performance of Unshrouded Pin Fin Heat Sinks,” ASME J. Electronic Packaging, 116(4), pp. 306-309.
[55] Shaukatullah, H., Storr, W. R., Hansen, B. J., and Gaynes, M. A., 1996, “Design and Optimization of Pin Fin Heat Sinks for Low Velocity Applications,” 12th IEEE SEMI-THERM Symposium, Austin, TX , USA, March 5-7, pp. 151-163.
[56] Box, G. E. P. and Wilson, K. B., 1951, “On the Experimental Attainment of Optimum Conditions,” J. Royal Statistics Society, Series B, 13, pp. 1-45.
[57] Box, G. E. P. and Behnken, D. W., 1960, “Some New Three Level Designs for the Study of Quantitative Variables,” Technometrics, 2, pp.455-475.
[58] Box, G. E. P. and Draper, N. R., 1987, Empirical Model-Building and Response Surfaces, John Wiley & Sons, New York, USA.
[59] Monthomery, D. C., 2001, Design and Analysis of Experiments, 5th Ed., John Wiley & Sons, New York, USA.
[60] Myers, G. N. and Montgomery, D. C., 2002, Response Surface Methodology, 2nd Ed,, John Wiley & Sons, New York, USA.
[61] Khuri, A. I. and Cornell, J. A., 1996, Response surfaces: Designs and Analyses, second edition, Marcel Dekker, New York, USA.
[62] Knight, R. W. and Gooding, J. S., 1991, “Optimal Thermal Design of Forced Convection Heat Sinks-Analytical,” ASME J. Electronic Packaging,, 113, pp. 313-321.
[63] Kraus, A. D. and Bar-Cohen, A., 1995, Design and Analysis of Heat Sinks, John Wiley and Sons, Inc., New York, USA.
[64] Lee, S., 1995, “Optimum Design and Selection of Heat Sinks,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, 18, pp.812-817.
[65] Chen, H. T., Horng, J. T., Chen, P. L., Hung, Y. H., 2004, “Optimal Design for PPF Heat Sinks in Electronics Cooling Applications,” ASME J. Electronic Packaging , 126, pp. 410-422.
[66] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986, “Learning Representation by Backpropagaion Error, ” Nature, 323, pp. 533-536.
[67] Chen, S., Billings, S. A., and Grant, P. M., 1990, “Non-linear System Identification Using Neural Network,” Int. J. Control, 1, pp.1191-1214.
[68] Ilonen, J., Kamarainen, J. K., and Lampinen, J., 2003, “Differential Evolution Training Algorithm for Feed-forward Neural Networks,” Neural Processing Letters, 17, pp.93-105.
[69] Ilumoka, A.A., 1997, “Optimal Transistor Sizing for CMOS VLSI Circuits Using Modular Artificial Neural Networks,” Proc. IEEE System Theory, West Hartford, Tennessee, U.S.A, March 9-11.
[70] Idir, K., L. and Chang, D. H., 1998, “Improved Neural Network Model for Induction Motor Design,” IEEE Trans. Magn., 34, pp.2948–2951.
[71] Han, S.Y. and Maeng, J. S., 2003, “Shape Optimization of Cut-off in a Multi-blade Fan/Scroll System Using Neural Network,” Int. J. Heat Mass Transfer, 46, pp. 2833–2839.
[72] Hadim, H. and Suwa, T., 2005, “A Multidisciplinary Design and Optimization Methodology for Ball Grid Array Packages Using Artificial Neural Networks,” ASME J. Electronic Packaging , 127, pp.306-313.
[73] Jambunathan, K., Hartle, S.L., Ashforth-Frost, S., and Fontama, V.N., 1996, “Evaluating Convective Heat Transfer Coefficients Using Neural Networks,” Int. J. Heat Mass Transer., 39, pp.2329-2332.
[74] Pacheco-Vega, A., Diaz, G., Sen, M., Yang, K.T., and McClain, R.L., 2001, “Heat Rate Predictions in humid Air-Water Heat Exchangers Using Correlations and Neural Networks,” ASME J. Heat Transfer, 123, pp.348-354.
[75] Goldberg, D.E., 1989, Genetic Algorithms in Search,Optimization and Machine Learning, Addison-Wesley, Reading, MA, USA.
[76] Holland, J. H., 1992, “Genetic Algorithms,” Scientific American, 267, pp. 44-50.
[77] Krishnakumar, K. and Goldberg, D.E., 1992, “Control System Optimization Using Geneic Algorithms,” J. Guidance Control Synamics, 15, pp.735-740.
[78] Chen H. T., Horng, J. T., Chen, P. L., and Hung, Y. H., 2004, “Optimal Design for PPF Heat Sinks in Electronics Cooling Applications,” ASME J. Electronic Packaging, 126, pp.410-422.
[79] Chen, H. T., Chen, P. L., Horng, J. T., and Hung, Y. H., 2005, “Design Optimization for Pin-Fin Heat Sinks,” ASME J. Electronic Packaging, 127, pp.397-406.
[80] Wang, M. P., Chen, H. T., Horng, J. T., Wu, T. Y., Chen, P. L., and Hung, Y. H., 2005, “Thermal Optimal Design for Partially-Confined Compact Heat Sinks,” IPACK2005-73118, Proceedings of InterPACK’05, International Electronic Packaging Technical Conference and Exhibition, San Francisco, USA, July 17-22.
[81] Wu, M. C., Peng, C. H., Lee, C. Y., Fang, C. J., and Hung, Y. H., 2005, “Optimal Design for Thermal Performance of a Heat Sink Integrated with Thermoelectric Cooler,” HT2005-72234, Proceedings of HT2005, ASME Summer Heat Transfer Conference, San Francisco, USA, July 17-22.
[82] Horng, J. T., Chang, S. F., Wu, T. Y., Chen, P. L., and Hung,, Y. H., 2008, “Thermal Optimal Design for Parallel Plain-Fin Heat Sinks by Using Neuro-Genetic Method,” IEEE Transactions on Components and Packaging Technologies, February (In Press).
[83] Chen, H. T., Chen, P. L., Horng, J. T., Chang, S. F., and Hung, Y. H., 2006, “Thermal Design Optimization for Strip-Fin Heat Sinks with a Ducted Air Flow,” Itherm 2006, San Diego, CA, USA, May 30-June 2.
[84] Lee, C. Y., Wu, M. C., Peng, C. H., Fang, C. J., and Hung, Y. H., “Optimal Approach with Genetic Algorithm for Thermal Performance of Heat Sink/TEC Assembly,”Itherm 2006, San Diego, CA, USA, May 30-June 2.
[85] Fang, C.J., 2006, Thermal Optimization for Confined Stationary or Rotating MCM Disk with Round Air Jet Array Impingement, Ph.D. Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.
[86] Lee, C. Y., 2007, Fluid Flow Behavior and Thermal Optimization for a Stationary or Rotating Multi-Chip Module Disk with Various Types of Jet Impingement, Ph.D. Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, R.O.C.
[87] Hung, Y. H. and Perng, S. W., 1988, “An Experimental Technique for Measuring Transient Natural/Forced-Convective Heat Fluxes in a Vertical Channel,” Exp. Therm. Fluid Sci., 1, pp.305-313.
[88] Hung, Y. H. and Shiau, W. M., 1989, “An Effective Model for Measuring Transient Natural Convection Heat Flux in Vertical Parallel Plates with a Rectangular Rib,” Int. J. Heat Mass Transfer, 32, pp.863-871.
[89] Achour M. and Bar-Cohen A., 1999, “Heat Sink Optimization for Maximum Performance and Minimum Mass,” In Advances in Electronic Packaging-1999, EEP-26-1, ASME, New York, pp. 737-744.
[90] Incropera, D., 1996, Fundamentals of Heat and Mass Transfer, John Willey & Sons, Inc.,New York, USA.
[91] Yovanovich, M. M., Muzychka, Y. S. and Culham, J. R., 1999, “Spreading Resistance of Isoflux Rectangles and Strips on Compound Flux Cannels,” Journal of Thermophysics and Heat Transfer, 13, pp. 495-500.
[92] Kline, S. J. and McClintock, F. A., 1953, “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering, pp. 3-8.
[93] Moffat, R. J., 1988, "Describing the Uncertainties in Experimental Results," Expl. Thermal Fluid Sci., 1, pp. 3-17.
[94] Taguchi, G., 1993, Taguchi on Robust Technology Development, ASME Press, New York, USA.
[95] Wu, M. C., Wu, J. T., Horng, S. F., Chang, P. L., Chen, P. L., and Hung, Y. H., 2007, “A Semi-Empirically Thermal Optimization for Heat Sink/TEC Assemblies with Various External Thermal Resistances,” InterPACK 2007, Vancouver, Canada, July 8-12.
[96] Chen, H. T., Chen, P. L., Wu, T. Y., Chang, S. F., and Hung, Y. H., 2006, ”Pressure Drop and Heat Transfer Characteristics for Partially-Confined Heat Sinks in Ducted Flow,”IMECE2006-13893, IMECE2006, Chicago, Illinois, USA, November 5-10.
[97] Liu, C. Y. and Hung, Y. H., 2003, “Heat Transfer and Flow Friction Characteristics for Compact Cold Plates,” ASME J. Electronic Packaging, 125, pp.104-113.
[98] Beavers, G. S., Sparrow, E. M. and Magnuson, R. A., 1970, “Experiments on the Breakdown of Laminar Flow in a Parallel-Plate Channel,” Int. J. Heat Mass Transfer, 13, pp. 809-815.
[99] Sparrow, E. M, 1955, Analysis of Laminar Forced Convection Heat Transfer in the Entrance Region of Flat Rectangular Ducts, NACA TN 3331.
[100] Kays, W. M. and Perkins, H. C., 1973, Forced Convection, Internal Flow in Ducts, in Rohsenow W. M. and Hatnett, J. P., eds., Handbook of Heat Transfer, McGraw-Hill, New York, USA, pp. 7-22.
[101] Shah, R. K. and Bhatti, M. S., 1987, “Laminar Convective Heat Transfer in Ducts,” Handbook of Single-Phase Convective Heat Transfer, Willey, New York, USA.
[102] Ellison, G. N., 1984, Thermal Computations for Electronic Equipment, Van Nostrand Reinhold Co., New York, USA.
[103] Kays, W. M., and Crawford, M.E., 1993, Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill, New York, USA.