簡易檢索 / 詳目顯示

研究生: 曾崇瑋
Tseng, Chung-Wei
論文名稱: 單層二硫化鎢上吸附原子遷移之探討
Adatoms Migration on Monolayer Tungsten Disulfide
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 林永昌
Lin, Yung-Chang
李奎毅
Lee, Kuei-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 76
中文關鍵詞: 二維材料吸附原子實時影像掃描穿透式顯微鏡
外文關鍵詞: 2d material, adatoms, in-situ image, STEM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吸附原子在二維材料上的遷移行為是基礎科學中重要的資訊。我們嘗試用化學氣相沉積法製備銦吸附原子於單層二硫化鎢的系統,並且利用掃瞄式穿透電子顯微鏡觀察銦吸附原子的遷移行為並進行分析。我們發現在 非晶碳較少的區域,銦原子的遷移行為與理論計算的結果一致;然而非晶碳較多的區域其遷移行為則與理論計算結果稍微不同。


    Adatoms migration on 2d material is important for fundamental science. In this thesis, first, we prepare our system - Indium adatoms on monolayer tungsten disulfide by the method of CVD. Then, by taking advantage of the STEM technique, we detect the migration of adatoms by in-situ ADF-STEM images. Experiment results show the same trend as theoretical calculation in clean regions, while slightly different in amorphous carbon-rich regions.

    論文摘要......................................................... I Abstract.........................................................III 致謝............................................................. V 目 錄 ..........................................................VIII 第一章 序論..................................................... 1 1.1 半導體科技發展史 . . . . . . . . . . . . . . . . . . . .. . 1 1.2 二維材料發展 . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 吸附原子於過渡金屬二硫屬化物 . . . . . . . . . . . . . . . . 5 1.4 論文結構 . . . . . . . . . . . . . . . . . . . . . . . . . . 6 第二章 二維材料介紹.............................................................. 7 2.1 石墨烯 (Graphene) . . . . . . . . . . . . . . . . . . . . . .7 2.1.1 晶體結構 (Lattice structure) . . . . . . . . . . . . . . . 7 2.1.2 電學性質 (Electrical properties) . . . . . . . . . . . . . 8 2.2 二硫化鎢 (Tungsten disulfide) . . . . . . . . . . . .. . . . 14 2.2.1 晶體結構 (Lattice structure) . . . . . . . . . . . . . . . 14 2.2.2 電學性質 (Electrical properties) . . . . . . . . . . . . . 16 第三章 材料成長與檢測............................................................... 19 3.1 石墨烯成長與檢測 . . . . . . . . . . . . . .. . . . . . . . . 19 3.1.1 成長設備 . . . . . . . . . .. . . . . . . . . . . . . . . . 20 3.1.2 流程與參數 . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 拉曼光譜檢測 . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 成長吸附銦原子二硫化鎢及檢測 . . . . . . . . . . . . . . . . . 27 3.2.1 成長設備 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 流程與參數 . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.3 光學顯微鏡、拉曼光譜及光致螢光光譜檢測 . . . . . . 35 3.3 沿石墨烯側向成長吸附銦原子二硫化鎢及檢測 . . . . . . . . . 39 3.3.1 流程與參數 . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 拉曼光譜檢測 . . . . . . . . . . . . . . . . . . . . . . . 42 第四章 掃瞄式穿透顯微鏡實驗結果與分析............................................. 43 4.1 TEM影像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 吸附原子之準實時影像分析 . . . . . . . . . . . . . . . . . . . 46 4.2.1 實時影像­1 . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.2 實時影像­2 . . . . . . . . . . . . . . . . . . . . . . . . . 62 第五章 結論............................................................... 71 參考文獻.................................................. 73

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomi­ cally thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
    [2] H. Li, S. Wang, H. Sawada, G. G. D. Han, T. Samuels, C. S. Allen, A. I. Kirk­ land, J. C. Grossman, and J. H. Warner, “Atomic structure and dynamics of single platinum atom interactions with monolayer mos2,” ACS Nano, vol. 11, pp. 3392–3403, Mar. 2017.
    [3] C.­H.Yeh, H.­C. Chen, H.­C. Lin, Y.­C. Lin, Z.­Y. Liang, M.­Y. Chou, K. Sue­ naga, and P.­W. Chiu, “Ultrafast monolayer in/gr­ws2­gr hybrid photodetec­ tors with high gain,” ACS Nano, vol. 13, no. 3, pp. 3269–3279, 2019. PMID: 30790512.
    [4] D. V. Tuan, “Electronic and transport properties of graphene,” in Charge and Spin Transport in Disordered Graphene­Based Materials, pp. 5–34, Springer International Publishing, oct 2015.
    [5] J. Yao, Y. Sun, M. Yang, and Y. Duan, “Chemistry, physics and biology of graphene­based nanomaterials: new horizons for sensing, imaging and medicine,” J. Mater. Chem., vol. 22, pp. 14313–14329, 2012.
    [6] A. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder,electron­phonon coupling, doping and nonadiabatic effects,” Solid State Com­ munications, vol. 143, pp. 47–57, 07 2007.
    [7] S. Chen, Y. Chen, W. Yan, S. Zhou, X. Qin, W. Xiong, and L. Liu, “Electronic and magnetic properties ofbulk and monolayer crsi2: A first­principle study,” Applied Sciences, vol. 8, no. 10, 2018.
    [8] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition­metal dichalcogenide semiconduc­ tors,” Phys. Rev. X, vol. 4, p. 031005, Jul 2014.
    [9] C. Ataca, H. Şahin, and S. Ciraci, “Stable, single­layer mx2 transition­metal oxides and dichalcogenides in a honeycomb­like structure,” The Journal of Physical Chemistry C, vol. 116, no. 16, pp. 8983–8999, 2012.
    [10] Q. H. Wang, K. Kalantar­Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two­dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, pp. 699–712, Nov. 2012.
    [11] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation ofthe observed optical, electrical and structural properties,” Ad­ vances in Physics, vol. 18, no. 73, pp. 193–335, 1969.
    [12] Y. L. Huang, Y. Chen, W. Zhang, S. Y. Quek, C.­H. Chen, L.­J. Li, W.­T. Hsu, W.­H. Chang, Y. J. Zheng, W. Chen, and A. T. S. Wee, “Bandgap tunability at single­layer molybdenum disulphide grain boundaries,” Nature Communi­ cations, vol. 6, p. 6298, Feb. 2015.
    [13] A. Kuc, N. Zibouche, and T. Heine, “Influence ofquantum confinement on the electronic structure of the transition metal sulfide ts2,” Phys. Rev. B, vol. 83,
    p. 245213, Jun 2011.
    [14] C.­C. Lu, Y.­C. Lin, Z. Liu, C.­H. Yeh, K. Suenaga, and P.­W. Chiu, “Twisting bilayer graphene superlattices,” ACSNano, vol. 7, pp. 2587–2594, Mar. 2013.
    [15] S. Amini, J. Garay, G. Liu, A. A. Balandin, and R. Abbaschian, “Growth of large­area graphene films from metal­carbon melts,” Journal of Applied Physics, vol. 108, no. 9, p. 094321, 2010.
    [16] “Yung­Chang Lin, PhD Thesis,” 2012.
    [17] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spec­ troscopy in graphene,” Physics Reports, vol. 473, no. 5, pp. 51 – 87, 2009.
    [18] Y. A. Wu, Y. Fan, S. Speller, G. L. Creeth, J. T. Sadowski, K. He, A. W. Robertson, C. S. Allen, and J. H.Warner, “Large single crystals ofgraphene on melted copper using chemical vapor deposition,” ACSNano, vol. 6, pp. 5010– 5017, June 2012.
    [19] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of high­quality monolayer ws2 layers on sapphire and imaging its grain bound­ ary,” ACS Nano, vol. 7, pp. 8963–8971, Oct. 2013.
    [20] C. Lofton and W. Sigmund, “Mechanisms controlling crystal habits of gold and silver colloids,” Advanced Functional Materials, vol. 15, no. 7, pp. 1197– 1208, 2005.
    [21] W.­Y. Wu, S. Chakrabortty, C. K. L. Chang, A. Guchhait, M. Lin, and Y. Chan, “Promoting 2d growth in colloidal transition metal sulfide semicon­ ductor nanostructures via halide ions,” Chem. Mater., vol. 26, pp. 6120–6126,
    Nov. 2014.
    [22] X. Zhang, X.­F. Qiao, W. Shi, J.­B. Wu, D.­S. Jiang, and P.­H. Tan, “Phonon and raman scattering of two­dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material,” Chem. Soc. Rev., vol. 44, pp. 2757–2785, 2015.
    [23] Z. Jia, B. Yan, J. Niu, Q. Han, R. Zhu, D. Yu, and X. Wu, “Transport study of graphene adsorbed with indium adatoms,” Phys. Rev. B, vol. 91, p. 085411, Feb 2015.
    [24] U. Chandni, E. A. Henriksen, and J. P. Eisenstein, “Transport in indium­ decorated graphene,” Phys. Rev. B, vol. 91, p. 245402, Jun 2015.
    [25] J. Hong, Y. Pan, Z. Hu, D. Lv, C. Jin, W. Ji, J. Yuan, and Z. Zhang, “Direct imaging of kinetic pathways of atomic diffusion in monolayer molybdenum
    disulfide,” Nano Lett., vol. 17, pp. 3383–3390, June 2017.

    QR CODE