研究生: |
戴渝璇 Dai, Yu-Syuan |
---|---|
論文名稱: |
氧化鋁粉末在不同粒徑下的複介電係數量測 Characterizing the Complex Permittivity of Alumina Powder in Various Sizes |
指導教授: |
張存續
Chang, Tsun-Hsu |
口試委員: |
蔡哲瑋
Tsai, Tse-Wei 趙賢文 Chao, Hsein-Wen 許博淵 Shew, Bor-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 介電係數 、粉末材料 、參數映射圖 、有效介質理論 、粒徑 |
外文關鍵詞: | Complex permittivity, Poder material, Contour map, Effective medium theory, Particle size |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一直以來,粉末的介電特性量測需要考慮諸多變因,例如: 孔隙率、密度、濕度、雜質等因素[1]-[3],導致目前無法直接量測粉末的介電特性。常見的介電測量方法中,例如: 傳輸線法 (Transmission Line)與共振腔法 (Resonant Cavity)等,需要對於材料進行加工[4]-[6],而這將花費時間和金錢來達成量測需求,在製備樣品的過程中也可能會出現缺陷。因此,本研究在探討一種無需混合高分子聚合物的情況下,可直接測量粉末材料複介電係數的方法。
這項研究為粉狀材料的介電特性量測,使用的共振腔頻率為2.45 GHz,以複合模型(Hybrid Model)進行模擬。使用不同大小的氧化鋁粉末作為樣品,裝在鐵氟龍容器中,並放置共振腔內金屬柱的上方,通過強化電場法(Field - Enhanced Method, FEM)強化頻率響應,向量網路分析儀(Vector Network Analyzer, VNA)會接收材料的訊號,然後使用高頻結構模擬器 (High Frequency Structure Simulator, HFSS)針對複合模型的模擬結果進行比較,透過分析得到材料的共振頻率和品質因子得到複介電係數。為了與理論值作比較,使用四個經典的有效介質理論模型(Maxwell-Garnett (MG), symmetrical Bruggeman (sBM), Landau-Lifshitz-Looyenga (LLL), Lichtenecker’s logarithmic (LOG))來取得粉末的複介電特性理論值,檢驗本研究探討的複介電係數量測方法準確性,其中,LLL模型的數據誤差最小。另外,本研究發現在奈米尺度下,隨著氧化鋁粉末尺寸的減小,會因為表面積效應(surface effect),導致複介電係數增加的現象。本研究成果—複合模型量測方式能夠直接而準確量測分析粉狀材料的複介電係數。
The dielectric measurement of the powdery material has always required considering many variables, e.g. porosity, density, humidity, impurity, etc.[1]-[3], which makes it difficult to directly measure the dielectric properties of the powder. The common dielectric measurement methods, such as Transmission Line, Resonant Cavity, etc. require material processing[4]-[6], which will spend time and money to match the demands, and manufacturing defects might occur. Therefore, we proposed a method that can measure the dielectric constant of materials in powder, without mixing the polymer and that is more convenient than other existing methods.
This work used a simulation-based Hybrid Model to do the dielectric measurement of powdery materials at a frequency of 2.45 GHz. Alumina powders of various sizes were used as samples, packed in a Teflon container, and then placed on the top of the central rod within a resonant cavity to obtain the frequency responses by the enhanced-field method (EFM). A vector network analyzer (VNA) received the experimental frequency response, which was then compared with the simulated results of the Hybrid Model by a full-wave simulator (high-frequency structure simulator, HFSS). Contour maps were established to map the samples' resonant frequencies and quality factors to their complex permittivities. Four classical effective medium theory models (Maxwell-Garnett (MG), symmetrical Bruggeman (sBM), Landau-Lifshitz-Looyenga (LLL), Lichtenecker’s logarithmic (LOG)) were considered to examine the proposed method with the LLL model best fitting the data. The results obtained by our method agreed well with that suggested by Looyenga’s formula for the powdery alumina. Also, as the size of the alumina powder decreases, its complex permittivity tends to increase due to the surface effect. This method serves as a fast and accurate way to directly characterize the dielectric properties of the powdery material.
[1]J. Molla, M. Gonzalez, R. Vila, and A. Ibarra, ”Effect of humidity on microwave dielectric losses of porous alumina,” Journal of applied physics, 85(3), 1727-1730, (1999).
[2] S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece and K. Schrapel, ”Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” Journal of the American Ceramic Society, 80(7), 1885-1888, (1997).
[3] R. Vila, M. Gonzalez, J. Molla and A. Ibarra, “Dielectric spectroscopy of alumina ceramics over a wide frequency range,” Journal of nuclear materials, 253(1-3), 141-148, (1998).
[4] J. Hornak, P. Trnka, P. Kadlec, O. Michal, V. Mentlík, P. Šutta, G. M. Csányi and Z. Á. Tamus, “Magnesium oxide nanoparticles: dielectric properties, surface functionalization and improvement of epoxy-based composites insulating properties,” Nanomaterials, 8(6), 381, (2018).
[5] M. Kurimoto, H. Okubo, K. Kato, M. Hanai, Y. Hoshina, M. Takei and N. Hayakawa, “Permittivity characteristics of epoxy/alumina nanocomposite with high particle dispersibility by combining ultrasonic wave and centrifugal force,” IEEE Transactions on Dielectrics and Electrical Insulation, 17(4), 1268-1275, (2010).
[6] G. M. Odegard, T. C. Clancy and T. S. Gates, “Modeling of the mechanical properties of nanoparticle/polymer composites,” Polymer, 46(2), 553-562, (2005).
[7] P. P. Lewicki, “Water as the determinant of food engineering properties,” A review, Journal of food engineering, 61(4), 483-495, (2004).
[8] J. Sierpowska, M. J. Lammi, M. A. Hakulinen, J. S. Jurvelin, R. Lappalainen and J. Töyräs, “Effect of human trabecular bone composition on its electrical properties,” Medical engineering & physics, 29(8), 845-852, (2007).
[9] R. Singh and R. K. Ulrich, “High and low dielectric constant materials,” The Electrochemical Society Interface, 8(2), 26, (1999).
[10] M. D. Hill, D. B. Cruickshank and I. A. MacFarlane, “Perspective on ceramic materials for 5G wireless communication systems,” Applied Physics Letters, 118(12), 120501, (2021).
[11] H. Y. Yao, Y. W. Lin and T. H. Chang, “Dielectric Properties of BaTiO3-Epoxy Nanocomposites in the Microwave Regime.” Polymers, 13(9), 1391, (2021).
[12] H. W. Chao, H. H. Chen and T. H. Chang, “Measuring the Complex Permittivities of Plastics in Irregular Shapes,” Polymers, 13, 2658, Aug. (2021).
[13] H. G. Lee and H. G. Kim, “Ceramic particle size dependence of dielectric and piezoelectric properties of piezoelectric ceramic-polymer composites.” J. Appl. Phys. 67, 2024, (1990).
[14] Y. Thakur, T. Zhang, C. Lacob, T. Yang, J. Bernholc, L. Q. Chen, J. Runt and Q. M. Zhang, “Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers,” Nanoscale, 10992, (2017).
[15] H. Ge, Y. Huang, Y. Hou, H. Xiao and M. Zhu, “Size dependence of the polarization and dielectric properties of KNbO3 nanoparticles,” RSC advances, 4(44), 23344-23350, (2014).
[16] R. Tempke, C. Wildfire, D. Shekhawat, and T. Musho, “Dielectric measurement of powdery materials using a coaxial transmission line. IET Science, ” Measurement & Technology, 14(10), 972-978, (2020).
[17]李言榮, 惲正中, ”材料物理學概論.”
[18] Wikipedia Commons, EM spectrum
[19] J. D. Jackson, “Classical electrodynamics,” (1999).
[20]陳華選,“不規則材料介電係數的量測與模型建立,”國立清華大學物理研究所碩士論文, (2021).
[21] Wikipedia, Dielectric spectroscopy
[22] David M. Pozar, “Microwave Engineering 3/E.”
[23] H. W. Chao, W. S. Wong and T. H. Chang, “Characterizing the complex permittivity of high-κ dielectrics using enhanced field method,” Rev. Sci. Instrum. 86, 114701, (2015).
[24]許弘竣,“2.45GHz微波加速生質柴油之酯化反應研究,”國立清華大學物理研究所碩士論文, (2020).
[25]林容丞,“微波材料處理與材料特性量測,”國立清華大學物理研究所碩士論文,(2012).
[26] H. W. Chao and T. H. Chang, “Characterization of the lossy dielectric materials using contour mapping,” Rev. Sci. Instrum. 89, 104705, (2018).
[27] H. W. Chao and T. H. Chang, “Wide-Range Permittivity Measurement With a Parametric-Dependent Cavity,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 66, NO. 10, (2018).
[28] K. Nikoofar*, Y. Shahedi and F. J. Chenarboo, “Nano Alumina Catalytic Applications in Organic Transformations,” Mini-Reviews in Organic Chemistry, 16(2), 102-110, (2019).
[29] S. Yuan, F. Shen, C. K. Chua and K. Zhou, “Polymeric composites for powder-based additive manufacturing: Materials and applications,” Progress in Polymer Science, 91, 141-168, (2019).
[30]陳彥廷,“高介電常數材料氧化鋁之特性研究,”國立交通大學電子研究所碩士論文,(2004).
[31] K. K. Nanda, “Size-dependent density of nanoparticles and nanostructured materials,” Physics Letters A 376 3301-3302, (2012).
[32] B. J. Abdullah, A. Jiang and M. S. Omar, “Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures,” Bull. Mater. Sci., Vol. 39, pp.1295-1302, No. 5, Sept, (2016).
[33] S. Sarkar, C. Jana and B. Bagchi, “How universal is the Lindemann criteria in melting of Lennard-Jones polydisperse solids?,” arXiv preprint arXiv:1612.07539, (2016).
[34] C. C. Yang and M. S. Li, “Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals,” PHYSICAL REVIEW, B 75, 165413, (2007).
[35] Ehrlich, Paul, L. E. Amborski, and R. L. Burton. "Dielectric properties of teflon from room temperature to 314 C and from frequencies of 102 to 105 c/s," J. Res. Nat. Bur. Stand 51, (1953).
[36]陳立人,“THz頻段之粉末狀材料性質量測,”國立清華大學物理研究所碩士論文,(2016).
[37] S. Vaucher, V. V. Yakovlev and H. Yeung,”Materials with required dielectric properties: Computational development and production of polymer‐ceramic composites,” Polymer Engineering & Science, 58(3), 319-326, (2018).
[38] H. I. Hsiang, K. Y. Lin, F. S. Yen, and C. Y. Hwang, ”Effects of particle size of BaTiO3 powder on the dielectric properties of BaTiO3/polyvinylidene fluoride composites,” Journal of materials science, 36(15), 3809-3815, (2001).