簡易檢索 / 詳目顯示

研究生: 陳盈儒
Chen, Yin-Ju
論文名稱: 奈米碳/高分子複合材料熱性質與電磁波屏蔽效能之研究
INVESTIGATIONS OF POLYMER COMPOSITES REINFORCED WITH NANO-CARBON MATERIALS ON THERMAL PROPERTIES AND ELECTROMAGNETIC INTERFERENCE SHIELDING EFFICIENCY
指導教授: 戴念華
Tai, N.H.

葉銘泉
Yip, M.C.
口試委員: 柯澤豪
Ko, T.H.
黃繼遠
Huang, C.Y.
郭文雄
Kuo, W.S.
葉孟考
Yeh, M.K.
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 175
中文關鍵詞: 高分子複合材料奈米碳管奈米石墨薄片石墨烯熱傳導電磁波屏蔽效能
外文關鍵詞: polymer composites, carbon nanotubes (CNTs), graphite nanosheets (GNSs), graphene (GP), thermal conductivity, electromagnetic interference shielding efficiency (EMI SE)
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討奈米碳/高分子複合材料之熱性質與電磁波屏蔽效能,研究中成功製備數種奈米碳材料做為補強材料,如單壁奈米碳管、多壁奈米碳管、奈米石墨薄片、石墨烯與鍍金屬石墨烯等,並將其分別加入至白蠟與聚苯胺二種高分子基材中。
    本論文一主題旨在探討添加奈米石墨薄片於白蠟中之熱傳導與熱性質分析,並比較奈米石墨薄片排列方向(有序排列及無序排列)之影響。研究結果顯示僅添加1.0 wt%的奈米石墨薄片即可在白蠟中形成一導通網絡,有助於此複合材料之熱傳導行為。本文中利用Maxwell-Euken與rule of mixtures 方程式預測無序與有序奈米石墨薄片排列之理論熱傳導值。實驗中證實此複合材料之熱傳導值與奈米石墨薄片之添加量呈正比關係,其有序與無序排列奈米石墨薄片添加量為5.0 wt%之熱傳導值分別為4.47±0.15 與1.68±0.07 W/m K,遠高於純白蠟之熱傳導值(0.33±0.04 W/mK),兩組複合材料之熱傳導實驗值皆十分相近理論值。熱性質方面,複合材料之熔點與固、液相變化溫度分別近似於53與60 0C,此二溫度並不會因為添加不同含量的奈米石墨薄片而有明顯的變化。此複合材料之潛熱則與添加材料之含量呈反比關係,說明此複合材料在相變化時所需之能量較低,成為具相變化功能之高導熱複合材料。
    本論文另一主題為探討聚苯胺複合材料於電磁波屏蔽效能之應用。本研究係分別添加不同比例(0.1、0.5、1.0 wt %)之單壁奈米碳管、奈米石墨薄片與奈米碳管/奈米石墨薄片三種補強材料於導電高分子聚苯胺製備複合材料,探討此類複合材料之微結構、表面形貌、導電值以及電磁波屏蔽效能。結果方面,添加1.0 wt %的奈米碳管/奈米石墨/聚苯胺複合材料之屏蔽效能可達27.0 dB,高於純聚苯胺的11.3 dB,導電值亦增加了五個數量值,是為本實驗之最高值。單比較奈米碳管與奈米石墨薄片之結果,由於兩種補強材料維度之差異,而後者具有較大的表面積更易於在基地材料中形成導電網絡,故添加奈米石墨薄片之導電值與屏蔽效能較佳。而本章中亦針對電磁波屏蔽之吸收與反射效果進行討論,証實吸收為此複合材料之主要機制。
    為更進一步探討聚苯胺複合材料之電磁波屏蔽效能,本章分別以石墨烯與鍍金屬石墨烯(銀與鎳)做為補強材料,亦探討其微結構、表面形貌與導電性等性質,使用之補強材料添加量分別為0.5、1.0、3.0與5.0 wt%。實驗結果顯示,添加5.0 wt%的鍍銀石墨烯於聚苯胺時具有最佳之導電度與屏蔽效能,分別為20.32 S/cm與29.33 dB。經表面形貌分析後得知,所添加之補強材料能夠均勻地分散在聚苯胺基地中形成導電網絡,而覆鍍於石墨烯的銀與鎳顆粒亦擔任良好的導電媒介。分析結果顯示吸收仍是此聚苯胺複合材料之主要屏蔽機制,其主因為較高的介電常數所致。經比較後,認為鍍銀石墨烯/聚苯胺複合材料所具有之屏蔽效果幾乎符合業界標準,此類複合材料日後極具發展潛力。
    為發展一低成本、製程簡要與使用方便之電磁波屏蔽材料,本章研究中使用一簡要之浸鍍方法製備具電磁波屏蔽效果之多孔複合材料。研究中使用市售海綿做為研究對象,藉由浸鍍製程將奈米碳材料(石墨烯、多壁奈米碳管、石墨烯/多壁奈米碳管)吸附於海綿纖維上形成導電網絡,並比較於吸附奈米碳材前有無鍍覆銀奈米顆粒對電磁波屏蔽效能之影響。研究結果顯示,未先鍍覆銀顆粒之電磁波屏蔽效能大約在14 dB左右,其值不因所吸附碳材料之不同而有明顯改變,但屏蔽值在先行鍍覆銀顆粒後卻有很明顯的提升,研究中之最高值為24.33 dB。經分析後,可知此海綿複合材料之電磁波屏蔽機制係以反射為主,推測係由海綿本身的多孔結構所致。


    In this dissertation, the investigations on the thermal properties and electromagnetic interference shielding efficiency (EMI SE) of nanoscale carbon materials/polymer composites have been studied. The fillers such single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite nanosheets (GNS), graphene (GP), and the graphene decorated with Ag (Ag@GP) and Ni (Ni@GP) were synthesized successfully, and incorporated with various polymers including paraffin and polyaniline (PAni), respectively.
    Two paraffin composites filled separately with randomly distributed graphite nanosheets (R-GNS) and oriented graphite nanosheets (O-GNS) were fabricated, and their thermal properties and structural characteristics were investigated. The experimental results show that a conductive network at 1.0 wt% GNS loading was found. The thermal conductivities of the R-GNS/paraffin and the O-GNS/paraffin composites are 4.47±0.15 and 1.68±0.07 W/m K, respectively, when 5.0 wt% GNS were introduced. The Maxwell-Euken model and the modified rule of mixtures model were proposed to predict the thermal conductivities of the R-GNS/paraffin and the O-GNS/paraffin composites, respectively. The melting point and the solid-liquid phase transition temperature of the R-GNS/paraffin composites are approximately 53 and 60 0C, respectively, and neither of these values was significantly affected by the presence of GNS. Decreases in the latent heat of the R-GNs/paraffin composites with increased GNS loading were also found.
    This work demonstrates the fabrications and characterizations of PAni composites containing SWCNTs, GNS, or hybrid fillers SWCNTs/GNS. The characterization of microstructure, examination of fracture surface morphologies, and measurement of electric conductivity and EMI SE were performed. It was found that both the electric conductivity and the EMI SE increase with filler loading, and the nanocomposites filled with 1.0 wt% SWCNTs/GNS possessed the highest electric conductivity of 16.2 S/cm and total EMI SE of 27.0 dB. The experimental results also show that absorption is the primary mechanism of EMI SE for all of the loadings and fillers.
    To develop novel EMI shielding materials, PAni composites filled with GP, GP decorated with silver nanoparticles (Ag@GP), and GP decorated with nickel nanoparticles (Ni@GP) were prepared, and the microstructures, morphologies, electrical conductivities, and EMI SE of the composites with different filler loadings (0.5, 1.0, 3.0, and 5.0 wt%) were investigated. The PAni composite containing 5.0 wt% Ag@GP showed the best electrical conductivity of 20.32 S/cm and highest EMI SE of 29.33 dB. The uniform dispersion of fillers significantly enhanced the formation of conductive pathways in the PAni matrix, and the presence of metal nanoparticles on the GP surface and between the GP layers also increased the electrical conductivity. The results of this study show that absorption is the primary factor governing EMI shielding, which is attributed to the high permittivity of the composites. This study reveals that the Ag@GP/PAni composite is promising for applications as an EMI shielding material.
    Porous composites fabricated through a simple dip-coating method demonstrated excellent performance in EMI shielding. A commercial sponge was coated with silver nanoparticles before being dip-coated with GP, MWCNTs, or hybrid GP/MWCNTs to form Ag/carbon nanomaterial hybrid composites. Herein, we found an insignificant difference in EMI SE among the porous composites without the Ag nanoparticle coating, with values of approximately 14.4 dB. Interestingly, the hybrid composites with the Ag nanoparticle coating exhibited excellent EMI shielding (24.33 dB). The EMI SE measurements showed that reflection dominates the EMI SE for all the sponge composites studied in this work due to their porous structure.

    中文摘要…………………………………………………………………I ABSTRACT…………………………………………………………...IV 誌謝 Acknowledgement......................................................................VIII OUTLINE………………………………………………………….......IX TABLE LIST…………………………………….…………………..XIII FIGURE LIST…………………………………………………….....XIV ACRONYMS AND ABBREVIATIONS…………………………...XXI CHARPTER 1 OVERVIEW 1.1 Carbon Materials…………………………………………………..1 1.1.1 Carbon Nanotubes (CNTs)………………………………………..2 1.1.2 Graphite materials…………………………………………………4 1.2 Phase-change Materials (PCMs) and Electromagnetic Interference (EMI) Shielding Materials………………………...16 1.2.1 Introduction to PCMs……………………………………………16 1.2.2 Applications of PCMs…………………………………………...17 1.2.3 Overview of EMI shielding efficiency …...……………………..19 1.2.4 Measurements of EMI SE………………………………………..25 1.3 Conductive Polymer Composites (CPCs)……………………….32 1.3.1 Introduction to CPCs…………………………………………….32 1.3.2 Polyaniline (PAni)……………………………………………….34 1.3.3 Paraffin…………………………………………………………..36 1.3.4 Carbon/polymer composites……………………………………..37 1.3.5 Carbon/paraffin PCM composites……………………………….38 1.3.6 EMI shielding of carbon/polymer composites……………….…..40 1.4 Motivation…………………………………………………………..47 1.5 Organization………………………………………………………..50 CHARPTER 2 EXPERIMENTAL PROCEDURES AND CHARACTERIZATIONS 2.1 Fillers syntheses…………………………………………………..51 2.1.1 Synthesis of SWCNTs……………………………………...……51 2.1.2 GNS synthesis ………….……………………………………..…51 2.1.3 Syntheses of GP and GP decorated with particles……………….52 2.2 Fabrications of composites……………………………………….58 2.2.1 Fabrication of GNS/paraffin composites………………...………58 2.2.2 Syntheses of PAni and PAni composites……………….………..59 2.2.3 Preparations of sponges coated with fillers (GP, MWCNTs, and GP/MWCNTs) without and containing Ag particles………….…60 2.3 Characteristic techniques………...……………………..………..65 2.3.1 Morphologies………………………………………...…………..65 2.3.2 Crystallization and functional groups……………………………65 2.3.3 Thermal properties and conductivity…………...………………..66 2.3.4 Electrical conductivity……………………………..…………….67 2.3.5 Network analyzer……………………………………..………….68 CHARPTER 3 THERMAL CARACTERIZATIONS OF THE GRAPHITE NANOSHEETS REINFORCED PARAFFIN PHASE-CHANGE COMPOSITES 3.1 Research background…………………………………………..….70 3.2 Results and discussion…………………………………….……….72 3.2.1 Characterizations of GNS………………………………….…….72 3.2.2 Morphologies of R-GNS/paraffin and O-GNS/paraffin composites……………………………………………...………..72 3.2.3 Thermal conductivities and thermal diffusivities of GNS/paraffin composites…………………………………………………...…..73 3.2.4 Thermal properties of GNS/paraffin composites……………..….79 3.3 Summaries………………………….………………………….….88 CHARPTER 4 EMI SE AND ELECTRIC CONDUCTIVITY OF SWCNTS/GNS/PANI NANOCOMPOSITES 4.1 Research background…………………………………………….89 4.2 Results and discussion……………………………………………91 4.2.1 Characterizations……………………………………………...…91 4.2.2 Morphologies………………………………………………...…..93 4.2.3 Performance of electric conductivity and EMI SE………………94 4.3 Summaries…………………….…………………………………104 CHARPTER 5 EMI SE OF POLYANILINE COMPOSITES FILLED WITH GRAPHENE AND DECORATED WITH NANOPARTICLES 5.1 Research background……………………………………….…..105 5.2 Results and discussion…………………………………………..108 5.2.1 Characterizations……………………………………...………..108 5.2.2 Morphologies…………………………………………….……..111 5.2.3 Electrical conductivities of EMI SE……………………...…….112 5.3 Summaries………….……………………………………………123 CHARPTER 6 POROUS COMPOSITES DIP-COATED WITH HYBRID NANOSCALE MATERIALS EXHIBIT HIGH EMI SE 6.1 Research background………………………….………………..124 6.2 Results and discussion……………………..……………………126 6.2.1 Characterizations of GP and MWCNTs..……...………………..126 6.2.2 Morphologies…………………………………………………...126 6.2.3 EMI SE of sponge composites…….……………………………128 6.3 Structure analysis of sponge composites……………………….139 6.4 Summaries……………………………...………………..………144 CHARPTER 7 CONCLUSIONS AND FUTURE WORKS 7.1 Conclusions…..……………………...………………..……….…145 7.2 Future works………………………………………………….…148 REFERENCES……………………………………………………….150 PUBLICATIONS…………………………………………………….173

    [1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence”, Nature, 318, pp. 162, 1985.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin cabon films”, Science, 306, pp. 666-69, 2004.
    [3] Rice University: R. E. Smalley’s Group Home Page Image Gallery (wppc.conforums.com).
    [4] S. Iijima,“Helical microtubules of graphitic carbon”, Nature, 354, pp. 56-58, 1991.
    [5] T. W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 358, pp. 220-22, 1992.
    [6] S. M. Huang, L. M. Dai, A. W. H. Mau, “Nanotube ‘crop circles’”, J. Mater. Chem., 9, pp. 1221-22, 1999.
    [7] M. Terrones, N. Grobert, J. Olivares, J. P. Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, A. K. Cheetham, H. W. Kroto, D. R. M. Walton, “Controlled production of aligned-nanotube bundles”, Nature, 388, pp. 52-55, 1997.
    [8] P. M. Ajayan, “Aligned carbon nanotubes in a thin polymer film”, Adv. Maters., 7, pp. 489-91, 1995.
    [9] R. Bhowmick, B. M. Clemens, B. A. Cruden, “Parametric analysis of chirality families and diameter distributions in single-wall carbon nanotube production by the floating catalyst method”, Carbon, 46, pp. 907, 2008.
    [10] Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, T. Haashi, “Interlayer spacings in carbon nanotubes”, Phys. Rev. B, 48, pp. 1907-1909, 1993.
    [11] O. Zhou, R. M. Fleming, D. W. Murph, C. H. Chen, R. C. Haddon, A. P. Ramirez, S. H. Glarum, “Defects in carbon nanostructures”, Science, 263, pp. 1744-1747, 1994.
    [12] C. Li, T. W. Chou, “Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces”, Comps. Sci. Tech., 63, pp. 1517-1524, 2003.
    [13] N. H. Tai, H. M. Chen, Y. J. Chen, P. Y. Hsieh, J. R. Liang, T. W. Chou, Optimization of processing parameters of the chemical vapor deposition process for synthesizing high-quality single-walled carbon nanotube fluff and roving, Comps. Sci. Tech., 72, pp. 1855-1862, 2012.
    [14] 權慧,”納米石墨填充聚合物基納米復合材料的制備與性能”,香港城市大學物理及材料科學系博士論文,p. 1,2009。
    [15] C. L. Chiang, C. C. M. Ma, F. Y. Wang, H. C. Kuan, “Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites”, J. European Polymer, 39, pp. 825-830, 2003.
    [16] A. Jorio, G. Dresselhaus, M. S. Presselhaus, “Carbon nanotubes”, Springer-Verlag Berlin Heidelberg, Berlin, Topics Appl. Physics 111, p. 455-493, 2008.
    [17] M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes”, Nature, 381, pp. 678-680, 1996.
    [18] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes”, Science, 277, pp. 1971-1975, 1997.
    [19] D. A. Walters, L. M. Ercson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, “Elastic strain of freely suspended single-wall carbon nanobutes ropes”, Appl. Phys. Letts., 74, pp. 3803-3805, 1999.
    [20] 孫曉剛,“碳納米管的應用研究進展”,納米材料與結構,1,pp. 20-25,2004。
    [21] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, “Young’s modulus of single-walled nanotubes”, Phys. Review B, 58, pp. 14013-14019, 1998.
    [22] W. G. Zheng, S. C. Wong, H. J. Sue, “Transport behavior of PMMA/expanded graphite nanocomposites”, Polymer, 73, pp. 6767-6773, 2002.
    [23] W. G. Zheng, X. H. Lu, S. C. Wong, “Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene”, J. Appl. Polym. Sci., 91, pp. 2781-2788, 2004.
    [24] A. Yasmin, J. J. Luo, I. M. Daniel, “Processing of expanded graphite reinforced polymer nanocomposites”, Comps. Sci. Tech., 66, pp. 1179-1189, 2006.
    [25] 黎梅、李冀飛、滬海英,”濃硫酸在可膨脹石墨製備中的作用”,河北師範大學學報,23,pp. 238-240,1999。
    [26] 劉志雄、沈萬慈、劉英傑、曹乃真,”膨脹石墨孔結構參數影響因素分析”,新型碳材料,11,pp. 33-37,1996。
    [27] 黃仁和、王力,” 超聲波和修飾劑及预聚體對石墨層間結構的影響”,材料科學與工程學報,24,pp. 235-237,2006。
    [28] W. G. Weng, G. H. Chen, D. J. Wu, X. F. Chen, J. R. Lu, P. P. Wang, “Fabrication and characterization of nylon 6/foliated graphite electrically conducting nanocomposites”, J. Polym. Sci.: Part B: Polym. Phys., 42, pp. 2844-2856, 2004.
    [29] T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme, L. C. Brinson, “Functionalized graphene sheets for polymer nanocomposites”, Nature nanotechnology, 3, pp. 327-331, 2008.
    [30] G. H. Chen, W. G. Weng, D. J. Wu, C. L. Wu, J. R. Lu, P. P. Wang, X.F. Chen, “Preparation and characterization of graphite nanosheets from ultrasonic powdering technique”, Carbon, 42, pp. 753-759, 2004.
    [31] X. M. Wu, S. H. Qi, J. He, B. Chen, G. C. Duan, “Synthesis of high conductivity polyaniline/Ag/graphite nanosheet composites via ultrasonic technique”, J. Polym. Res., 17, pp. 751-757, 2010.
    [32] B. Debelak, K. lafdi, “Use of exfoliated graphite filler to enhance polymer physical properties”, Carbon, 45, pp. 1727-1734, 2007.
    [33] E. T. Thostenson, T. W. Chou, “Processing – structure – multi - functional properties relationship in carbon nanotube/epoxy composites”, Carbon, 44, pp. 3022-3029, 2006.
    [34] A. Yasmin, J. J. Luo, I. M. Daniel, “Processing of expanded graphite reinforced polymer nanocomposites”, Comps. Sci. Tech., 66, pp. 1182-1189, 2006.
    [35] T. L. Wu, T. S. Lo, W. S. Kuo, “Effect of dispersion on graphite nanosheet composites”, Polym. Comps., 31, pp. 292-298, 2010.
    [36] W. S. Hummers Jr., R. E. Offeman, “Preparation of graphitic oxide”, J. American Chem. Soc., 80, pp. 1339, 1958.
    [37] B. C. Brodie, “On the atomic weight of graphite”, Philosop. Trans. of the Royal Soc. of London, 149, pp. 249-259, 1859.
    [38] L. Staudenmaier, “Method for the preparation of graphitic acid”, Berichte der Deutschen Chemischen Gesellschaft, 31, pp. 1481-1487, 1898.
    [39] H. He, J. Klinowski, M. Forster, A. Lerf, “A new structural model for graphite oxide”, Chem. Phys. Letts., 287, pp. 53-56, 1998.
    [40] W. F. Chen, L. F. Yan, P. R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds”, J. Phys. Chem. C, 114, pp. 19885-19890, 2010.
    [41] A. Ambrosi, C. K. Chua, A. Bonanni, M. Pumera, “Lithium aluminum hydride as reducing agent for chemically reduced graphene oxides”, Chem. mater., 24, pp. 2292-2298, 2012.
    [42] M. Feng, R.Q. Sun, H. B. Zhan, Y. Chen, “Lossless synthesis of graphene nanosheets decorated with cadmium sulfide quantum dots with excellent nonlinear optical properties”, Nanotehcnology, 21, 075601 (7pp), 2010.
    [43] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, R. S. Rouff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon, 45, pp. 1558-1565, 2007.
    [44] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kin, J. Y. Choi, Y. H. Lee, “Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance”, Adv. Funct. Mater., 19, pp. 1987-1992, 2009.
    [45] M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J. M. D. Tascón, “Vitamin C is a ideal substitute for hydrazine in the reduction of graphene oxide suspensions”, J. Phys. Chem., 114, pp. 6426-6432, 2010.
    [46] S. H. Domingues, R. V. Salvatierra, M. M. Oliverira, A. J. G. Zarbin, “Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization”, Chem. Comm., 47, pp. 2592-2594, 2011.
    [47] H. W. Tien, Y. L. Huang, S. Y. Yang, J. Y. Wang, C. C. M. Ma, “The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films”, Carbon, 49, pp. 1550-1560, 2011.
    [48] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. k. Prud’homme, R. Car, D. A. Saville, I. A. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, Phys. Chem. B, 110, pp. 8535-8539, 2006.
    [49] A. Zhamu, B. Z. Jang, “Mass production of pristine nanographene materials”, United States Patent Application Publication, No.: US 2011/0017585 A1, 2011.
    [50] G. K. Wang, X. Sun, F. Y. Lu, Q. K. Yu, C. S. Liu, J. Lian, “Controlled synthesis of MnSn(OH)6/graphene nanocomposites and their electrochemical properties as capacitive materials”, J. Solid State Chem., 185, pp. 172-179, 2012.
    [51] R. Giorgi, N. Lisi, T. Dikonimos, M. Falconieri, S. Gagliardi, E. Salernitano, P. Morales, L. Pilloni, “Graphene: large area synthesis by chemical vapor deposition”, Studi & ricerche, pp. 68-74, 2011.
    [52] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science, 324, pp. 1312-1314, 2009.
    [53] P. Zegers, “Overview of energy storage work carried out in the framework of the European Community’s energy storage”, 2nd BHRA Fluid Engineering International Conference of Energy Storage and Energy Management, Carnfied, Bedford, May 24~26, 1983.
    [54] 方貴銀、邢琳、楊帆、李輝,”相變蓄冷材料製備及熱性能研究”,低溫與超導,34,pp. 71-73,2006。
    [55] 崔海亭、楊锋,”蓄熱技術及其應用”,化學工業出版社,北京,p. 193,2004。
    [56] H. Mehling, L. F. Cabeza, “Heat and cold storage with PCM. An up to date ntroduction into basics and applications”. Springers-Verlag Berlin Heidelberg; 2008.
    [57] E. Orò, A de Gracia, A. Castell, M. M. Farid, L. F. Cabeza, “Review on phase change materials (PCMs) for cold thermal energy storage applications”, Applied Energy, 99, pp. 513-533, 2012.
    [58] 甘四洋、董發勤、楊玉山,”相變儲能材料在建築中的應用”,化工新型材料,36,pp. 5-31,2008。
    [59] 石海峰、张興祥,”蓄熱調溫紡織品的研究與開發現狀”,紡織學報,22,pp. 335-357,2001。
    [60] B. Boh, B. Šumiga, “Microencapsulation technology and its applications in building construction materials”, RMZ-Materials and Geoenvironment, 55, pp. 329-344, 2008.
    [61] K. Keyan, T. Ramachandran, O. L. Shumugasundaram, M. Balasubramaniam, T. Ragavendra, “Microencapsulation of PCMs in textiles: A review”, J. Textile and Apparel, Tech. and management, 7, pp. 1-10, 2012.
    [62] B. Boh, “Mikroenkapsulacija alj s koacervacijo (Microencapsulation of oils with coacervation)”, Master thesis, Univ. Ljubljana, 1986, pp. 198.
    [63] E. Knez, “Postopek za pripravo mikrokapsul (Process for preparing microcapsules)”, Patent SIA 8411319 (equivalent YU 1319/84), Aero Chemical, Graphic and printing industry, 1988.
    [64] E. Jahns, J. Burger, “Micro-encapsulated phase change material manufacture, properties and utilization”.
    [65] D. A. Neeper, “Thermal dynamics of wallboard with latent heat storage”, Solar energy, 68, pp. 393-403, 2000.
    [66] P. Horwath, “Roofs of the future”, Carolinas roofing, 2, pp. 37-40, MARCH. ARPIL 2011.
    [67] P. B. Jana, A. K. Mallick, K. De, “Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range”, IEEE Trans. Electromagn. Compat., 34, pp. 478-492, 1992.
    [68] P. F. Wilson, M. T. Ma, J. W. Adams, “Technique, for measuring the electromagnetic shielding effectiveness of materials. I. Far-field source simulation”, IEEE Trans. Electromagn. Compat., 3, pp. 239-247, 1988.
    [69] 凌國銓,”奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,國立清華大學碩動力機械工程學系碩士論文”, p. 56,2007。
    [70] P. X. Reinaldo, “Handbook of electromagnetic compatibility”, Academic Press, 1995.
    [71] 張家銘,”多層奈米碳管複合材料電磁屏蔽之研究”,國立中山大學光電工程研究所博士論文,p. 11,2008。
    [72] 邱國斌、蔡定平,”金屬表面電漿簡介”,物理雙月刊,28,pp. 472-485,2006。
    [73] A. D. Souza Gomes, “New polymers for special applications”, InTech., Ch. 3, p. 71-111, 2012.
    [74] 張永豐,”寬頻電磁波吸收材料設計與數值模擬”,國立中山大學光電工程研究所碩士論文,p. 5,2003。
    [75] 洪志緯,”抗EMI無電鍍銅聚丙烯腈高分子奈米複合材料之製備與研究”,大同大學材料工程研究所碩士論文,p. 36,2005。
    [76] E. Hanada, K. Takano, Y. Antoku, K. Matsumura, Y. Hoshino, T. Nishimura, K. Hyoudou, Y. Watanabe, Y. Nose, “Electromagnetic attenuation with stainless-steel fiber mesh”, IEEE EMC society Newsletter, 2003.
    [77] S. K. Hong, K. Y. Kim, T. Y. Kim, J. H. Kim, S. W. Park, J. H. Kim, B. J. Cho, “Electromagnetic interference shielding effectiveness of monolayr graphene”, Nanotechnology, 23, 455704 (5pp), 2012.
    [78] D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe, “Spectra and the semiconductivity of the (SN)x polymer”, J. Chem. Soc., Faraday Trans., 294, pp. 60, 1964.
    [79] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, A. J. Heeger, “Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x”, J.C.S. Chem. Comm., 16, pp. 578-580, 1977.
    [80] G. Harsanyi, Polymer Films in Sensor Applications, Ch. 3, pp. 209, 1995.
    [81] S. Bose, N. H. Kim, T. Kuila, K. T. Lau, J. H. Lee, “Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode”, Nanotechnology, 22, 295202 (9 pp), 2011.
    [82] J. H. Liu, J. W. An, Y. X. Ma, M. L. Li, R. B. Ma, “Synthesis of a graphene-polypyrrole nanotube composite and its application is supercapacitor electrode”, J. Electrochem. Soc., pp. A828-A833, 2012.
    [83] A. J. Miller, R. A. Hatton, S. R. P. Silva, “Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics”, Appl. Phys. Letts., 89, pp. 123115 (3 pages), 2006.
    [84] M. R. Karim, J. H. Yeum, M. S. Lee, K. T. Lim, “Synthesis of conducting polythiophene composites with multi-walled carbon nanotube by the γ-radiolysis polymerization method”, Maters. Chem. Phys., 112, pp. 779-782, 2008.
    [85] T. McNally, P. Pötschke, P. Halley, M. Curphy, D. martin, S. E. J. Bell, G. P. Brennan, D. Bein, P. Lemoine, J. P. Quinn, “Polyethylene multiwalled carbon nanotube composites”, Polymer, 46, pp. 8222-8232, 2005.
    [86] L. I. Tkachenko, A. P. Lisitskaya, O. S. Roshchupkina, G. I. Zvereva, A. V. Krestinin, O. N. Efimov, “Preparation of a polyacetylene composite with single-walled carbon nanotubes and study of its electrochemical properties”, Polymer Science Ser. A, 48, pp. 854-858, 2006.
    [87] R. Gerwig, K. Fuchsberger, B. Schroeppel, G. S. Link, G. Heusel, U. Kraushaar, W. Schumann, A. Stett, M. Stelzle, “PEDOT-CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties”, Frontiers in Neuroengineering, 5, pp. 1-11, 2012.
    [88] H. Letheby, “On the production of a blue substance by the electrolysis of sulphate of aniline”, J. Chem. Soc., 15, pp. 161-163, 1862.
    [89] A. G. MacDiarmid, J. C. Chiang, M. halpern, W. S. Huang, S. L. Mu, L. D. Nanaxakkara, S. W. Wu, S. I. Yaniger, “”Polyaniline”: Interconversion of metallic and insulating forms”, Mol. Cryst. Liq. Cryst., 121, pp. 173-180, 1985.
    [90] R. R. Parajuli, “Developing conducting polymer nanocomposites with carbon nanomaterials for molecular detection and full cell applications”, Ph.D. thesis, Department of Chemistry, The State University of New Jersey, p. 4, 2011.
    [91] W. G. Li, C. L. Johnson, H. L. Wang, “Preparation and characterization of monolithic polyaniline-graphite composite actuators”, Polymer, 45, pp. 4679-4775, 2004.
    [92] Y. J. Lim, M. Y. Park, S. K. Lee, W. K. Lee, N. J. Jo, “Polyaniline and multi-walled carbon nanotube composite electrode for rechargeable battery”, Trans. Nanoferrous Met. Soc. China, 22, pp. 717-721, 2012.
    [93] J. Yan, T. Wei, B. Shao, Z. J. Fan, W. Z. Qian, M. L. Zhang, F. Wei, “Preparation of graphene nanosheet/polyaniline composites with high specific capacitance”, Carbon, 48, pp. 487-493, 2010.
    [94] A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, H. Bailung, “TiO2/polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process”, Appl. Surf. Sci., 258, pp. 1199-1205, 2011.
    [95] 胡大為,胡小芳,林麗瑩,”環氧樹脂基含水定形相變材料”,塑料工業,34,pp. 63-65,2006。
    [96] 鄭立輝,方美華,程四清,宋光森,”微膠囊化石蠟的製備和熱性能”,應用化學,2,pp. 200-202,2004。
    [97] 张正國,王學澤,方曉明,”石蠟/膨脹石墨複合相變材料結構與熱性能”,華南理工大學學報(自然科學版),34,pp. 1-5,2006。
    [98] 张仁元等,相變材料與相變儲能技術,科學出版社,北京,p. 125,2009。
    [99] Nasser, E. William, “Waxes, natural and synthetic”, J. Encyclopedia of chemical processing and design, 67, New York: Marcel Dekker, p. 17 .
    [100] Kaye, George William Clarkson, “Mechanical properties of materials”, Kaye and laby tables of physical and chemical constants, National physical laboratory (http://www.kayelaby.npl.co.uk/).
    [101] M. K. Yeh, N. H. Tai, J. H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes”, Carbon, 44, pp. 1-9, 2006. .
    [102] X. S. Dub, M. Xiao, Y. Z. Meng, A. S. Hay, “Synthesis and properties of poly(4,4’oxybis(benzene)disulfide)/graphite nanocomposites via in situ ring-opening polymerization of macrocyclic oligomers”, Polymer, 45, pp. 6713-6718, 2004.
    [103] H. Kim, H. T. Hnhn, L. M. Viculis, S. Gilje, R. B. Kaner, “Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite”, Carbon, 45, pp. 1578-1582, 2007.
    [104] S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, S. Maier, A. Strevens, “A composite from poly(m-phenylenevinylene-co-2,5-dioxtoxy-p-phenylenevinylene) and carbon nanotube: A novel material for molecular optoelectronics”, Adv. Mater., 10, pp. 1091-1093, 1998.
    [105] G. Z. Chen, M. S. P. Shaffer, D. Coleby, G. Dixon, W. Z. Zhou, D. J. Fray, A. H. Windle, “Carbon nanotube and polypyrrole composites: coating and doping”, Adv. Mater., 12, pp. 522-526, 2000.
    [106] R. Mangu, S. Rajaputra, V. P. Singh, “MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors”, Nanotechnology, 22, 215502 (11pp), 2011.
    [107] M. N. Tchoul, W. T. Ford, M. L. P. ha, I. Chavez-Sumarriva, B. P. Grady, G. L. Lolli, D. E. Resasco, S. Arepalli, “Composites of single-walled carbon nanotubes and polystyrene: preparation and electrical conductivity”, Chem. Mater., 20, pp. 3210-3126, 2008.
    [108] S. J. Park, M. S. Cho, S. T. lim, H. J. Choi, M. S. Jhon, “Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization”, Macromol. Rapid Commun., 24, pp. 1070-1073, 2003.
    [109] Q. Zhang, S. Rastogi, D. Chen, D. Lippits, P. J. Lemstra, “Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique”, Carbon, 44, pp. 778-785, 2006.
    [110] Y. Bin, M. Mine, A. Koganemaru, X. Jiang, M. Mastuo, “Morphology and mechanical and electrical properties of oriented PVA-VGCF and PVA-MWNT composites”, Polymer, 47, pp. 1308-1317, 2006.
    [111] V. Mottaghitalab, G. M. Spinks, G. G. Wallace, “The influence of carbon nanotubes on mechanical and electrical properties of polyaniline fibers”, Synthetic Metals, 152, pp. 77-80, 2005.
    [112] X. Wu, S. Qi, J. He, G. Duan, “High conductivity and low percolation threshold in polyaniline/graphite nanosheets composites”, J. Maters Sci., 45, pp. 483-489, 2010.
    [113] S. Stankovich, D. A. Kikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Rouff, “Graphene-based composite materials”, Nature, 442, pp. 282-286, 2006.
    [114] V. Panwar, R. M. Mehra, “Study of electrical and dielectric properties of styrene-acrylonitrile/graphite sheets composites”, European Polymer J., 44, pp. 2367-2375, 2008.
    [115] S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil, “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability”, Carbon, 49, pp. 198-205, 2011.
    [116] J. L. Song, Q. G. Guo, Y. J. Zhong, X. Q. Gao, “Thermophysical properties of high-density graphite foams and their paraffin composites”, New Carbon Maters., 27, pp. 27-34, 2012.
    [117] A. Sari, A. Karaipekli, “Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material”, Appl. Therm. Eng., 27, pp. 1271-1277, 2007.
    [118] J. L. Xiang, L. T. Drzal, “Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material”, Solar Energy Maters. Solar Cells, 95, pp. 1811-1818, 2011.
    [119] M. Mehrali, S. T. latibari, M. Mehrali, H. S. C. metselaar, “Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite”, Energy Convers. Manag., 67, pp. 275-282, 2013.
    [120] M. H. Al-Saleh, U. Sundararaj, “Electromagnetic interference shielding mechanisms of CNT/polymer composites”, Carbon, 47, pp. 1738-1746, 2009.
    [121] Z. F. Liu, G. Bai, Y. Huang, Y. F. Ma, F. Du, F. F. Li, T. Y. Guo, Y. S. Chen, “Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites”, Carbon, 45, 821-827, 2007.
    [122] N. Li, Y. Huang, F. Du, X. B. He, X. Lin, H. J. Gao, Y. F. Ma, F. F. Li, Y. S. Chen, Peter C. Eklund, “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites”, Nano letters, 6, pp. 1141-1145, 2006.
    [123] Y. Huang, N. Li, Y. F. Ma, F. Du, F.F. Li, X. B. He, X. Lin, H. J. Gao, Y. S. Chen, “The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites”, Carbon, 45, pp. 1614-1621, 2007.
    [124] J. J. Liang, Y. Wang, Y. Huang, Y. F. Ma, Z. F. Liu, J. M. Cai, C. D. Zhang, H. J. Gao, Y. S. Chen, “Electromagnetic interference shielding of graphene/epoxy composites”, Carbon, 47, pp. 922-925, 2009.
    [125] B. Q. Yuan, L. M. Yu, L. M. Sheng, K. An, X. L. Zhao, “Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites”, J. Phys. D: Appl. Phys., 45, 235108 (6 pp), 2012.
    [126] H. B. Zhang, Q. Yan, W. G. Zheng, Z. X. He, Z. Z. Yu, “Tough graphene-polymer microcellular foams for electromagnetic interference shielding”, ACS Appl. Mater. Interfaces, 3, pp. 918-924, 2011.
    [127] A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature Mater., 6, pp. 183-191, 2007.
    [128] Z. Hashin, S. Shtrikman, “A variational approach to the theory of the effective magnetic permeability of multiphase materials”, J. Appl. Phys., 33, pp. 3125-3131, 1962.
    [129] M. M. Farid, A. M. Khudhair, S. A. K. Razack, “A review on phase change energy storage materials and applications”, Energ. Conve. Manag, 45, pp. 1597-1615, 2004.
    [130] S. Pincemin, R. Olives, X. Py, “Highly conductive composites made of phase change materials and graphite for thermal storage”, Sol. Energ. Mat. Sol. C, 92, pp. 603-618, 2008.
    [131] A.Abhat, “Low temperature latent thermal energy storage system: heat storage materials”, Sol. Energ., 30, pp. 313-332, 1983.
    [132] B. Zalba, J. M. Marin, Cabeza, “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications”, Appl. Therm. Eng., 23, pp. 251-283, 2003.
    [133] S. Himran, A. Suwono, G. A. Mansoori, “Characterization of alkanes and paraffin waxes for application as phase change energy storage medium”, Energ. Sour., 16, pp. 117-128, 1994.
    [134] X. Liu, H. Liu, S. Wang, “Preparation and thermal properties of form stable paraffin phase change material encapsulation”, Energ. Conve. Manag., 47, pp. 2515-2222, 2006.
    [135] Y. J. Zhong, S. Z. Li, X. H. Wei, “Heat transfer enhancement of paraffin wax using compressed expanded natural graphite for thermal energy storage”, Carbon, 48, pp. 300-304, 2010.
    [136] A. Sharma, V. V. Tyagi, C. R. Chen, “Review on thermal energy storage with phase change materials and applications”, Renew. Sust. Energ. Rev., 13, pp. 318-345, 2009.
    [137] A. Karaipekli, A. San, K. Kaygusuz, “Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications”, Renew. Eng., 32, pp. 2201-2210, 2007.
    [138] X. Py, S. Olives, S. Mauran, “Paraffin/porous graphite matrix composite as a high and constant power thermal storage material”, Int. J. Heat Mass Trans., 44, pp. 2727-2737, 2001.
    [139] A. Mills, M. farid, J. R. Selman, “Thermal conductivity enhancement of phase change materials using a graphite matrix”, Appl. Therm. Eng., 26, pp. 1652-1661, 2006.
    [140] L. Xia, P. Zhang, R. Z. Wang, “Preparation and thermal characterization of expanded graphite/paraffin composite phase change material”, Carbon, 48, pp. 2538-2548, 2010.
    [141] J. K. Carson, S. J. Lovatt, D. J. Tanner, A. C. Cleland, “Thermal conductivity bounds for isotropic, porous materials”, Internat. J. Heat and Mass Trans., 48, pp. 2150-2158, 2005.
    [142] F. Yavari, H. R. Fard, K. Pashayi, M. A. Rafiee, A. Zamiri, Z. Z. Yu, R. Ozisik, T. Borca-Tasciuc, N. Koratkar, “Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration grapheme additives”, J. Phys. Chem. C, 115, pp. 8753-8758, 2011.
    [143] J. L. Xiang, L. T. Drzal, “Thermal conductivity of exfoliated graphite nanoplatelet paper”, Carbon, 49, pp. 773-778, 2011.
    [144] H. M. Kim, K. Kim, C. Y. Lee, J. Joo, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst”, Appl. Phys. Letts., 84, pp. 589-591, 2004.
    [145] S. Y. Yang, K. Lozano, A. Lomeli, H. D. Foltz, R. Jones, “Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites”, Comps. Part A, 36, pp. 691-697, 2005.
    [146] P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, S. K. Dhawan, “Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding”, Maters. Chem. Phys., 113, pp. 919-926, 2009.
    [147] J. Joo, C. Y. Lee, “High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers”, J. Appl. Phys., 88, pp. 513-518, 2000.
    [148] M. J. Raupp Cardoso, M. F. Santos Lima, D. Maria Lenz, “Polyaniline synthesized with functionalized sulfonic acids for blends manufacture”, Maters. Res., 10, pp. 425-429, 2007.
    [149] J. Yan, T. Wei, Z. J. Fan, W. Z. Qian, M. L. Zhang, X. D. Shen, F. Wei, “Preparation of graphene nanosheet/carbon/polyaniline composite as electrode material for supercapacitors”, J. Power Sources, 195, pp. 3041-3045, 2010.
    [150] W. T. Hong, N. H. Tai, “Investigations on the thermal conductivity of composites reinforced with carbon nanotubes”, Diam. Relat. Maters., 17, pp. 1577-1581, 2008.
    [151] F. Huang, E. Vanhaecke, D. Chen, “In situ polymerization and characterizations of polyaniline on MWCNT powders and aligned MWCNT films”, Catalysis Today, 150, pp. 71-76, 2010.
    [152] X. S. Du, M. Xiao, Y. Z. Meng, “Synthesis and characterization of polyaniline/graphite conducting nanocomposites”, J. Poly. Sci.: Part B: poly. Phys., 42, pp. 1972-1978, 2004.
    [153] P. Saini, R. Jalan, S. K. Dhawan, “Synthesis and characterization of processable polyaniline doped with novel dopant NaSIPA”, J. Appl. Poly. Sci., 108, pp. 1437-1446, 2008.
    [154] I. A. Tchmutin, A. T. Ponomarenko, E. P. Krnichnaya, G. I. Kozub, O. N. Efimov, “Electrical properties of composites based on conjugated polymers and conductive fillers”, Carbon, 41, pp. 1391-1395, 2003.
    [155] Z. L. Mo, H. F. Shi, H. Chen, G. P. Niu, Z. L. Zhao, Y. B. Wu, “Synthesis of graphite nanosheets/polyaniline nanorods composites with ultrasonic and conductivity”, J. Appl. Poly. Sci., 112, pp. 573-578, 2009.
    [156] K. J. Vinoy and R. M. Jha, “Radar Absorbing Materials-From theory to design and characterization”, Kluwer Academic Publishers, Boston, p. 37-54, 1996.
    [157] X. P. Shui, D. D. L. Chung, “Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness”, J. Electro. Maters., 26, pp. 928-933, 1997.
    [158] J. H. Byeon, J. W. Kim, “Aerosol based fabrication of a Cu/polymer and its application for electromagnetic interference shielding”, Thin Solid Films, 520, pp. 1048-1052, 2011.
    [159] X. P. Gan, Y. T. Wu, L. Liu, B. Shen, W. B. Hu, “Electroless cooper plating on PET fabrics using hypophosphite as reducing agent”, Surf. Coats. Tech., 201, pp. 7018-7023, 2007.
    [160] C. S. Xiang, Y. B. Pan, X. J. Liu, X. W. Sun, X. M. Shi, J. K. Guo, “Microwave attenuation of multi walled carbon nanotube-fused silica composites”, Appl. Phys. Lett., 87, pp.1231031-1231033, 2005.
    [161] M. S. Cao, W. L. Song, Z. L. Hou, B. Wen, J. Yuan, “The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites”, Carbon, 48, pp. 788-796, 2010.
    [162] M. Qyharcabal, T. Olinga, M. P. Foulc, S. Lacomme, E. Gontier, V. Vigneras, “Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites”, Comps. Sci. Tech., 74, pp. 107-112, 2013.
    [163] K. S. Subrahmanyam, A. K. Manna, S. K. Pati, C. N. R. Rao, “A study of graphene decorated with metal nanoparticles”, Chem. Phys. Letts., 497, pp. 70-75, 2010.
    [164] H. K. HE, C. Gao, “Graphene nanosheets decorated with Pd, Pt, Au and Ag nanoparticles: Synthesis, characterization, and catalysis applications”, Sci. China Chem., 54, pp. 397-404, 2011.
    [165] A. Sigal, M. I. Rojas, E. P. M. Leiva, “Interferents for hydrogen storage on a graphene sheet decorated with nickel: A DFT study”, Int. J. Hydrog. Energy, 36, pp. 3537-3546, 2011.
    [166] 方建軍,李素芳,查文珂,從洪雲,陳俊芳,陳宗璋,“鍍鎳石墨烯的微波吸收性能”,無機材料學報,26,pp. 467-471,2011。
    [167] D. A. Makeiff, T. Huber, “Microwave absorption by polyaniline-carbon nanotube composites”, Synth. Metals, 156, pp. 497-505, 2006.
    [168] S. Stankovich, R. D. Piner, S. T. Nguyen, R. S. Rouff, “Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets”, Carbon, 44, pp. 3342-3347, 2006.
    [169] D. S. Geng, S. L. Yang, Y. Zhang, J. L. Yang, J. Liu, R. Y. Li, T. K. Shem, X. L. Sun, S. Y. Ye, S. Knights, “Nitrogen doping effects on the structure of graphene”, Appl. Surf. Sci., 257, pp. 9193-9198, 2011.
    [170] A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, V. B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide”, Nat. Chem., 2, pp. 581-587, 2010.
    [171] K. J. Huang, D. J. Niu, X. Liu, Z. W. Wu, Y. Fan, Y. F. Chang, Y.Y. Wu, “Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor”, Emectrochimica Acta, 56, pp. 2947-2953, 2011.
    [172] R. A. Matula, “Electrical Resistivity of Copper, Gold, Palladium and Silver”, J. Phys. Chem. Refere. Data, 8, pp. 1147-1298, 1979.
    [173] C. Y. Ho, M. W. Ackeman, K. Y. Wu, T. N. Havill, R. H. Bogaard, R. A. Matula, S. G. Oh, H. M. James, “Electrical Resistivity of Ten Selected Binary Alloy Systems”, J. Phys. Chem. Refere. Data, 12, pp. 183-322, 1983.
    [174] A. P. Singh, M. Mishra, A. Chandra, S. K. Dhawan, “Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application”, Nanotechnology, 22, 465701 (9 pp), 2011.
    [175] C. Wang, X. J. Han, P. Xu, X. L. Zhang, Y. C. Du, S. R. Hu, J. Y. Wang, X. H. Wang, “The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material”, Appl. Phys. Letts., 98, 072906-072909, 2011.
    [176] K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee, “Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes”, Adv. Funct. Mater., 11, pp. 387-392, 2001.
    [177] X. D. Jin, Q. Q. Ni, T. Natsuki, “Composites of multi-walled carbon nanotubes and shape memory polyurethane for electromagnetic interference shielding”, J. Comp. Maters., 0, pp. 1-8, 2011.
    [178] V. Eswaraiah, V. Sankaranarayanan, A. K. Mishra, S. Ramaprabhu, “Electromagnetic interference (EMI) shielding of carbon nanostrucutred films”, ICCCE 2010, pp. 150-152, 2010.
    [179] S. M. Yuen, C. C. M. Ma, C. Y. Chuang, K. C. Yu, S. Y. Wu, C. C. Yang, M. H. Wei, “Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites”, Comps. Sci. Tech., 68, pp. 963-968, 2008.
    [180] B. C. Tappan, S. A. Steiner, E. P. Luther, “Nanoporous metal foams”, Angew. Chem. Int. Ed., 49, pp. 4544-4565, 2010.
    [181] H. F. Ko, C. Sfeir, P. N. Kumta, “Novel synthesis strategies for natural polymer and composite biomaterials as potential scaffolds for tissue engineering”, Phil. Trans. R. Soc. A, 368, pp. 1981-1997, 2010.
    [182] W. Chen, R. B. Rakhi, L. B. Hu, X. Xie, Y. Cui, H. N. Alshareef, “High-performance nanostructured supercapacitors on a sponge”, Nano Letters, 11, pp. 5165-72, 2011.
    [183] H. B. Yao, G. Huang, C. H. Cui, X. H. Wang, S. H. Yu, “Macroscale elastomeric conductors generated from hydrothermally synthesized metal-polymer hybrid nanocable sponges”, Adv. Mater., 23, pp. 3643-3647, 2011.
    [184] D. D. Nugyen, N. H. Tai, S. B. Lee, W. S. Kuo, “Superhydrophobic and superolephilic properties of graphene-based sponges fabricated using a facile dip coating method”, Energy Environ. Sci., 5, pp. 7908-7912, 2012.
    [185] Chen ZP, Xu C, Ma CQ, Ren WC, Cheng HM. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater., 25, pp. 1296-1300, 2013.
    [186] Y. J. Chen, D. D. Nguyen, Y. A. Li, M. C. Yip, W. K. Hsu, N. H. Tai, “Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites”, Diam. Relat. Maters., 20, pp. 1183-1187, 2011.
    [187] Y. J. Chen, Y. A. Li, M. C. Yip, N. H. Tai, “Eelectromagnetic interference shielding efficiency of polyaniline composites filled with graphene and graphene decorated with nanoparticles”, Comps. Sci. Tech., 80, pp. 80-86, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE