研究生: |
朱翊禎 Ju, Yi-Jen |
---|---|
論文名稱: |
深共熔離子液體與有機電解質於電雙層電容器與染料敏化太陽能電池之應用 The Application of Deep Eutectic Solvents and Organic Electrolytes for EDLCs and DSSCs |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
胡啟章
Hu, Chi-Chang 李玉郎 汪上曉 衛子健 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 深共熔離子液體 、染料敏化太陽能電池 、電容器 |
外文關鍵詞: | Deep eutectic solvent, DSSC, EDLC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要研究利用深共熔離子液體與有機電解質於電雙層電容與染料敏化太陽能電池之應用。研究首先利用深共熔離子液體G.CC、M.CC和U.CC應用在電容器上並探討其行為,發現電容特性以G.CC為最佳,進一步添加輔助電解質過氯酸鋰 (LiClO4) 與低黏度的有機溶劑γ-丁酸內酯(GBL) 來改善離子液體之高黏度造成高掃描速率下之電阻特性。在添加過氯酸鋰於離子液體後發現反而造成電化學行為變差,此可經由測量導電度、黏度的結果來進一步確認。變差的原因可能為Li+ 會和甘油 (glycerol, G)、順丁烯二酸 (malonic acid, M) 或尿素(urea, U) 這類的氫鍵提供者 (Hydrogen bond donor, HBD) 形成鍵結減弱深共熔離子液體中之氫鍵而致。以G.CC來添加不同量之GBL的結果增加了氯化膽鹼 (Choline chloride, CC) 離子的移動性,有助於電化學可逆性與電容維持率的提升。由於γ-丁酸內酯之低黏度特性十分適合用於電容器上,其後並將之與其他溶劑如PC、EG等互相混合來探討成分的不同在電雙層電容器有無顯著的差異。最後改變第三章中G.CC之配位基為G.BCI來應用在染料敏化太陽能電池中,測試I3- 之擴散與黏度之關係與機制。由結果發現溶劑黏度的改善雖有助於I3- 之擴散,但離子濃度的降低但卻會造成I-/I3- 之過電位與電荷轉移阻抗的增加。另外掃描速度的改變會影響反應速率,而致使I3- 擴散至電極表面反應量的不同而造成了薄層擴散(thin-layer voltammetry) 與半無窮遠擴散 (semi-infinite diffusion) 兩種擴散機制。在組裝成全電池後亦發現擴散速率的提升有助於增加電池之光電效率。
參考文獻
1. A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”,John Wiley & Sons, Singapore, 1980.
2. D. R. Crow, “Principles and Applications of Electrochemistry”, 2nd Ed. Chapman and Hall Ltd. London, 1979.
3. 胡啟章編著,電化學原理與方法,五南圖書, 2007.
4. 田福助編著,電化學理論與應用,第八版,新科技, 2001.
5. A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837, 1990.
6. 張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”,國立中正大學化工研究所碩士論文, 2000.
7. R. Kotz, M. Carlen, Electrochimica Acta, 45, 2483 (2000).
8. R. P. Simpraga and B. E. Conway, Electrochimica Acta, 43, 3045 (1998).
9. C. C. Hu, Y. H. Huang, Journal of The Electrochimical Society, 146, (7), 2465 (1999).
10. S. Maeda, D.B. Cairns and S.P. Armes, Eur. Polym. J, 3, 245-253 (1997).
11. E. K. W. Lai, P. D. Beattie, F. P. Orfino, E. Simon, S. Holdcroft, Electrochimica Acta, 44, 2559-2569 (1999).
12. K. K. Liu and M. A. Anderson, Journal of The Electrochimical Society, 143, 124 (1996).
13. J. P. Zheng and T. R. Jow, Journal of The Electrochimical Society, 142, L6-L8 (1995).
14. V. Srinivasan and J. W. Weidner, Journal of The Electrochimical Society, 147, 880 (2000).
15. C. Lin, J.A. Ritter, and B.N. Popov, Journal of The Electrochimical Society, 146(9), 3155-3160 (1999).
16. 江鴻儒, “循環伏安法及電鍍法制備釕電極在電化學電容器之應用”, 國立中正大學化工研究所碩士論文, 2001.
17. M. J. Earle and K. R. Seddon, Pure Appl. Chem., 72, 7, 1391–1398 (2000).
18. T. Sato, G. Masuda, K. Takagi, Electrochimica Acta, 49, 3603–3611 (2004).
19. M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda, Journal of The Electrochimical Society, 141, 7, 1730–1735 (1994).
20. M. Ue, M. Takeda, T. Takahashi, and M. Takehara, Electrochemical and Solid-State Letters, 5, (6), A119-A121 (2002).
21. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, and Y. Itob, Journal of The Electrochimical Society, 150, (4), A499-A502 (2003)
22. A. Lewandowski, M. Galinski, Journal of Physics and Chemistry of Solids, 65, 281–286 (2004)
23. N. Handa, T. Sugimoto, M. Yamagata, M. Kikuta, M. Kono, M. Ishikawa, Journal of Power Sources, 185, 1585–1588 (2008).
24. K. Yuyama, G. Masuda, H. Yoshida, T. Sato, Journal of Power Sources, 162, 1401–1408 (2006).
25. J. N. Barisci, G. G. Wallace, D. R. MacFarlane, R. H. Baughman, Electrochemistry Communications, 6, 22–27 (2004).
26. Y. J. Kim, Y. Matsuzawa, S. Ozaki, K. C. Park, C. Kim, M. Endo, H. Yoshida, G. Masuda, T. Sato, and M.S. Dresselhaus, Journal of The Electrochimical Society, 152, (4), A710-A715 (2005).
27. A. Jarosik, S.R. Krajewski, A. Lewandowski, P. Radzimski, Journal of Molecular Liquids, 123, 43-50 (2006).
28. M. Galinski, I. Stepniak, J. Appl Electrochem, 39, 1949–1953 (2009).
29. G. P. Pandey, S. A. Hashmi, and Y. Kumar, Journal of The Electrochimical Society, 157, A105-A114 (2010).
30. H. Every, A.G. Bishop, M. Forsyth, D.R. MacFarlane, Electrochimica Acta, 45, 1279-1284 (2000).
31. H. Matsumoto, T. Matsuda, T. Tsuda, R. Hagiwara, Y. Ito, Y. Miyazaki, Chemistry Letters, 26-27 (2001).
32. R. Kawano and M. Watanabe, Chem. Commun., 2107-2109 (2005).
33. Y. Bai, Y. Cao, J. Zhang, M. Wang, R. Li, P. Wang, S. M. Zakeeruddun, M. Grätzel, Nature Materils, 7, 626-630 (2008).
34. Z. Lan, J. Wu, D. Wang, S. Hao, J. Lin, Y. Huang, Solar Energy, 80, 1483-1488 (2006).
35. A. Hauch, A. Georg, Electrochimica Acta, 46, 3457–3466 (2001).
36. L. Bay, K. West, B. Winther-Jensen,T. Jacobsen, Solar Energy Materials & Solar Cells, 90, 341–351, (2006).
37. V. Jovanovski, E. Stathatos, B. Orel, P. Lianos, Thin Solid Films, 511-512, 634 -637 (2006).
38. C. P. Lee, P. Y. Chen, R. Vittal, K. C. Ho, Journal of Materials Chemistry, 20, 2356-2361 (2010).
39. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M.Grätzelz, Journal of The Electrochemical Society, 153 (12), A2255-A2261 (2006).
40. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q. Meng, Electrochemistry Communications, 9, 596–598 (2007).
41. K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagiday, Chemistry Letters, 32, 28-29 (2003).
42. G. Wang,W. Xing, S. Zhuo, Journal of Power Sources, 194, 568–573 (2009).
43. N. Ikeda, K. Teshima, T. Miyasaka, Chem. Commun., 1733-1735 (2006).
44. B. X. Lei, W. J. Fang, Y. F. Hou, J. Y. Liao, D. B. Kuang, C. Y. Su, Journal of Photochemistry and Photobiology A : Chemistry, 216, 8-14 (2010).
45. D. Battisti, G. A. Nazri, B. Klassen, R. Aroca, J. Phys. Chem., 97, 5826-5830 (1993).
46. E. Lust, A. Jänes, M. Arulepp, Journal of Electroanalytical Chemistry, 562, 33-42 (2004).
47. M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rummaa, A. Jänes, E. Lust, Journal of Power Sources, 133, 320-328 (2004).
48. C. P. Tien, W. J. Liang, P. L. Kuo, H. S. Teng, Electrochimica Acta, 53, 4505-4511 (2008).
49. C. P. Tien, H. S. Teng, Journal of the Taiwan Institute of Chemical Engineers, 40, 452-456 (2009).
50. R. Chandrasekaran, M. Koh, A. Yamauchi, M. Ishikawa, Journal of Power Sources, 2009.
51. E. Frackowiak, F. Beguin, Carbon, 39, 937-950 (2001).
52. M. Morita, T. Kaigaishi, N. Yoshimoto, M. Egashira, T. Aida, Electrochem. Solid-State Lett., 9, A386-A389 (2006).
53. C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc., 130, 2730-2731 (2008).
54. R. Mysyk, E. Raymundo-Pinero, J. Pernak, F. Beguin, J. Phys. Chem. C, 113, 13443-13449 (2009).
55. A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun., 70–71 (2003).
56. A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, J. Am. Chem. Soc., 126, 9142-9147 (2004).
57. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, G. Wang , Y. Yang, Journal of Power Sources,158, 773-778 (2006).
58. F. Wu, R. Chen, F. Wu, L. Li, B. Xu, S. Chen, G. Wang, Journal of Power Sources, 184, 402-407 (2008).
59. A. P. Abbott, P. M. Cullis, M. J. Gibson, R. C. Harris, E. Raven, Green Chem., 9, 868-872 (2007).
60. H. G. Morrison, C. C. Sun, S. Neervannan, International Journal of Pharmaceutics, 378, 136-139 (2009).
61. H. R. Jhong, D. S. H. Wong, C. C. Wan, Y. Y. Wang, T. C. Wei, Electrochemistry Communications, 11, 209-211 (2009).
62. B. Zhang, J. Liang, C.L. Xu, B.Q. Wei, D.B. Ruan, D.H. Wu, Materials Letters, 51, 539-542 (2001).
63. C. W. Huang, C. M. Chuang, J. M. Ting, H. S. Teng, Journal of Power Sources, 183, 406-410 (2008).
64. R. Chandrasekaran, Y. Soneda, J. Yamashita, M. Kodama, H. Hatori, J. Solid State Electrochem, 12, 1349-1355 (2008).
65. S. Yamazaki, A. Takegawa, Y. Kaneko, J. Kadokawa, M. Yamagata ,M. Ishikawa, Electrochemistry Communications, 11, 68-70 (2009).
66. 陳俊宏, “鈷系氧化物電極材料之合成,鑑定與應用”, 國立清華大學化工研究所碩士論文, 2010.
67. J. R. MacDonald, “Impedance spectroscopy:emphasizing solid materials and systems”, Wiley, New York (1987).
68. 葉玉堂, “紅外光吸收光譜儀”, 行政院國家科學委員會精密儀器發展中心, 儀器總覽 4 化學分析儀器, 19–21, 1998.
69. A. Jänes, E. Lust, Journal of Electroanalytical Chemistry, 588, 285-295 (2006).
70. A. Jänes, E. Lust, Electrochemistry Communications, 7, 510-514 (2005).
71. M. Ue, K. Ida, S. Mori, Journal of The Electrochimical Society, 141, 2989-2996 (1994).
72. S. S. Krishnam, S. Soundara, Journal of physical chemistry, 73, 4036 (1969).
73. M. Takeuchi, Y. Kameda, Y. Umebayashi, S. Ogawa, T. Sonoda, S. Ishiguro, M. Fujita, M. Sano, Journal of Molecular Liquids, 148, 99-108 (2009).
74. M. C. Smart, B. V. Ratnakumar, S. Surampudi, Journal of The Electrochemical Society, 149 (4), A361-A370 (2002).
75. E. J. Plichta, S. Slane, Journal of Power Sources, 69, 41-45 (1997).
76. M. Anouti, P. Porion, C. Brigouleix, H. Galiano, D. Lemordant, Fluid Phase Equilibria, 299, 229-237 (2010).
77. D. Baronetto, N. Krstajic, S. Trasatti, Electroehimica Acta, 39 (16), 2359-2362 (1994).
78. K. H. Chang, C. C. Hu, C. Y. Chou, Chem. Mater., 19, 2112-2119 (2007).
79. S. Ardizzone, G. Fregonara, S. Trasatti, Electroehimica Acta, 35 (1), 263-267 (1990).
80. Y. Cao, J. Zhang, Y. Bai, R. Li, S. M. Zakeeruddin, M. Grätzel, P. Wang, J. Phys. Chem. C, 112, 13775-13781 (2008).
81. A. Petrocco, M. Liberatore, A. D. Carlo, A. Reale, T. M. Brown, F. Decker, Phys. Chem. Chem. Phys., 12, 10786-10792(2010).
82. 顧書源, “四級銨鹽為基礎之室溫離子液體作為電解質溶劑於染料敏化太陽能電池上之應用”, 國立清華大學化工研究所碩士論文, 2010.
83. J. L. Lan, Y. Y. Wang, C. C. Wan, T. C. Wei, H. P. Feng, C. Peng, H. P. Cheng, Y. H.Chang, W. C. Hsu, Current Applied Physics,10, S168-S171 (2010).
84. S. Y. Yang, K. H. Chang, Y. F. Lee, C. C. M. Ma, C. C. Hu, Electrochemistry Communications,12, 1206-1209 (2010).
85. S. J. Lee, S. Mukerjee, J. McBreen, Y. W. Rho, Y. T. Kho, T. H. Lee, Electrochimica Acta, 43 (24), 3693-3701 (1998).
86. O. J. Curnick, P. M. Mendes, B. G. Pollet, Electrochemistry Communications, 12, 1017-1020 (2010).
87. C. P. Lee, K. M. Lee, P. Y. Chen, K. C.Ho, Solar Energy Materials & Solar Cells, 93, 1411-1416 (2009).
88. A. P. Abbott, K. E. Ttaib, G. Frisch, K. J. McKenzie, K. S. Ryder, Phys. Chem. Chem. Phys., 11, 4269-4277 (2009).