研究生: |
陳美妤 Chen, Mei Yu |
---|---|
論文名稱: |
配位基結構對銅胺酸錯合物之一價銅光量子產率的影響研究 Effect of Ligand Structure on Copper(I) Quantum Yields of Copper(II)/Amino-Acid Complexes |
指導教授: |
吳劍侯
Wu, Chien Hou |
口試委員: |
王順利
吳淑褓 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 銅錯合物 、胺酸 、光化學反應 、量子產率 、一價銅生成量 |
外文關鍵詞: | copper complexes, amino acids, photochemistry, quantum yields, Cu(I) formation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文量測水相中銅胺酸錯合物於313 nm照射下之一價銅量子產率。八種非極性胺酸配位基包括甘胺酸 (glycine, Gly)、α-丙胺酸 (alanine, Ala)、β-丙胺酸 (β-alanine, β-Ala)、2-胺基丁酸 (2-aminobutyric acid, 2-ABA)、2-胺基異丁酸 (2-aminoisobutyric acid, 2-AIBA)、4-胺基丁酸 (4-aminobutyric acid, 4-ABA)、纈胺酸 (valine, Val) 及正纈胺酸 (norvaline, Nor)。在不同條件(pH值與配位基濃度)下,利用bathocuproine之方法量測一價銅生成量並探討不同銅胺酸錯合物的一價銅量子產率關係。於313 nm光照下,一配位基的銅錯合物其一價銅量子產率 (ΦCu(I),CuL) 大小順序如下:2-AIBA > β-Ala > Ala,2-ABA,Nor > Val >4-ABA > Gly,範圍從0.279到0.06 (mol einstein-1)。不同實驗條件下,銅胺酸錯合物之光反應性,皆能以簡單之物種分佈模式預測。以碳為中心的自由基,其穩定性會對一價銅量子產率有重大的影響;形成六元螯合環的銅胺酸錯合物會比五元螯合環的銅胺酸錯合物有較大的一價銅量子產率,其可能原因為電子轉移效率增加。
Cu(I) quantum yields were measured at 313 nm for copper(II)-amino acid complexes with eight amino acids in aqueous solutions. Photochemical formation of copper(I) has been systematically studied for copper(II) complexes in different conditions (changing pH and ligand concentration). Bathocuproine method was used to determine copper(I) concentration. For the 1:1 Cu(II) complexes (CuL), the Cu(I) quantum yields at 313 nm (ΦCu(I),CuL) are in the sequence (25 0C, ionic strength = 0.10 M): 2-AIBA > β-ala > ala, 2-ABA, nor > val > 4-ABA > gly, ranging from 0.279 to 0.06 (mol einstein-1). Experimental data show that the photoreactivity of Cu(II)/amino-acid complexes can be predicted by Cu(II) speciation in a wide range of the solution conditions, varying in pH and the total concentration of ligand. The stability of the carbon-center radical plays an important role on the Cu(I) quantum yield. The six-membered chelate ring of Cu(II)/amino-acid complexes has larger Cu(I) quantum yields than five-membered chelate ring, probably owing to the increasing of the intra-molecular electron-transfer rate.
Abirami, S.; Xing, Y. M.; Tsang, C. W.; Ma, N. L. Theoretical study of alpha/beta-alanine and their protonated/alkali metal cationized complexes. J. Phys. Chem. A 2005, 109, 500–506.
Allen, J. M.; Allen, S. K.; Baertschi, S. W. 2-Nitrobenzaldehyde: A convenient UV-A and UV-B chemical actinometer for drug photostability testing. J. Pharm. Biomed. Anal. 2000, 24, 167–178.
Anastasio, C.; Faust, B. C.; Allen, J. M. Aqueous-phase photochemical formation of hydrogen-peroxide in authentic cloud waters. J. Geophys. Res. Atmos. 1994, 99, 8231–8248.
Artioli, G. G.; Gualano, B.; Smith, A.; Stout, J.; Lancha, A. H., Jr. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med. Sci. Sports Exerc. 2010, 42, 1162–1173.
Baron, M.; Arellano, J. B.; Gorge, J. L. Copper and photosystem-II–a controversial relationship. Physiol. Plant. 1995, 94, 174–180.
Brand, L. E.; Sunda, W. G.; Guillard, R. R. L. Reduction of marine-phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 1986, 96, 225–250.
Burns, J. M.; Cooper, W. J.; Ferry, J. L.; King, D. W.; DiMento, B. P.; McNeill, K.; Miller, C. J.; Miller, W. L.; Peake, B. M.; Rusak, S. A.; Rose, A. L.; Waite, T. D. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquatic Sciences 2012, 74, 683–734.
Campbell, S.; Marzluff, E. M.; Rodgers, M. T.; Beauchamp, J. L.; Rempe, M. E.; Schwinck, K. F.; Lichtenberger, D. L. Proton affinities and photoelectron spectra of phenylalanine and n-methyl- and n,n-dimethylphenylalanine. Correlation of lone pair ionization energies with proton affinities and implications for n-methylation as a method to effect site specific protonation of peptides. J. Am. Chem. Soc. 1994, 116, 5257–5264.
Chen, Z.; Meng, H. A.; Xing, G. M.; Chen, C. Y.; Zhao, Y. L.; Jia, G. A.; Wang, T. C.; Yuan, H.; Ye, C.; Zhao, F.; Chai, Z. F.; Zhu, C. F.; Fang, X. H.; Ma, B. C.; Wan, L. J. Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 2006, 163, 109–120.
Das, S.; Johnson, G. R. A.; Nazhat, N. B.; Saadallanazhat, R. Ligand decomposition in the photolysis of copper(II) amino-acid complexes in aqueous-solution. J. Chem. Soc.-Faraday Trans. 1984, 80, 2759–2766.
Dash, A. C.; Jena, K. C.; Roy, A.; Mukherjee, D.; Aditya, S. Thermal and photochemical reactions of bis(diamine)(sulfito)cobalt(III) complexes: Effect of chelate-ring size. J. Chem. Soc. Dalton Trans. 1997, 2451–2461.
De, A.; Singh, M. F.; Singh, V.; Ram, V.; Bisht, S. Treatment effect of L-norvaline on the sexual performance of male rats with streptozotocin induced diabetes. Eur. J. Pharmacol. 2016, 771, 247–254.
de Torres, T.; Boyer, T. H. Fluorescence, absorbance, and ion exchange: Coupling analysis with water treatment for improved insight on copper complexation with natural organic matter. Desalin. Water Treat. 2015, 57, 6290–6301.
Del Giacco, T.; Lanzalunga, O.; Mazzonna, M.; Mencarelli, P. Structural and solvent effects on the C-S bond cleavage in aryl triphenylmethyl sulfide radical cations. J. Org. Chem. 2012, 77, 1843–1852.
Eriksen, R. S.; Mackey, D. J.; van Dam, R.; Nowak, B. Copper speciation and toxicity in Macquarie Harbour, Tasmania: An investigation using a copper ion selective electrode. Mar. Chem. 2001, 74, 99–113.
Faust, B. C. Experimental determination of molar absorptivities and quantum yields for individual complexes of a labile metal in dilute solution. Environ. Sci. Technol. 1996, 30, 1919–1922.
Felmy, A. R.; Girvin, D. C.; Jenne, E. A., MINTEQ–a computer program for calculating aqueous geochemical equilibria; U.S. Environmental Protection Agency: U.S.A, 1984.
Ferraudi, G.; Muralidharan, S. Photochemical properties of copper-complexes. Coord. Chem. Rev. 1981, 36, 45–88.
Forbes, G. S.; Heidt, L. J. Optimum composition of uranyl oxalate solution for actinometry. J. Am. Chem. Soc. 1934, 56, 2363–2365.
Fung, K.; Grosjean, D. Determination of nanogram amounts of carbonyls as 2,4-dinitrophenylhydrazones by high-performance liquid chromatography. Anal. Chem. 1981, 53, 168–171.
Hall, L. W.; Anderson, R. D.; Kilian, J. V.; Lewis, B. L.; Traexler, K. Acute and chronic toxicity of copper to the estuarine copepod eurytemora affinis: Influence of organic complexation and speciation. Chemosphere 1997, 35, 1567–1597.
Hayase, K.; Zepp, R. G. Photolysis of copper(II)-amino acid complexes in water. Environ. Sci. Technol. 1991, 25, 1273–1279.
Heidt, L. J.; Daniels, F. Photochemical technique II. Construction and tests of a quartz monochromator. J. Am. Chem. Soc. 1932, 54, 2384–2391.
Henriquez-Castillo, C.; Rodriguez-Marconi, S.; Rubio, F.; Trefault, N.; Andrade, S.; De la Iglesia, R. Eukaryotic picophytoplankton community response to copper enrichment in a metal-perturbed coastal environment. Phycol. Res. 2015, 63, 189–196.
Hong, J. W.; Guo, Y.-W.; Shin, J.-Y.; Kim, T. W. Performance enhancement of organic light-emitting diodes with an electron-transport layer of bathocuproine. Trans. Electr. Electron. Mater. 2016, 17, 37–40.
Jinnarak, A.; Teerasong, S. A novel colorimetric method for detection of gamma-aminobutyric acid based on silver nanoparticles. Sens. Actuator B-Chem. 2016, 229, 315–320.
Kakinen, A.; Bondarenko, O.; Ivask, A.; Kahru, A. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: Comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors 2011, 11, 10502–10521.
Klasinc, L. Application of photoelectron spectroscopy to biologically active molecules and their constituent parts: III. Amino acids. J. Electron Spectrosc. Relat. 1976, 8, 161–164.
Knauert, S.; Knauer, K. The role of reactive oxygen species in copper toxicity to two freshwater green algae. J. Phycol. 2008, 44, 311–319.
Lee, J.; Park, S.; Lee, Y.; Kim, H.; Shin, D.; Jeong, J.; Jeong, K.; Cho, S. W.; Lee, H.; Yi, Y. Electron transport mechanism of bathocuproine exciton blocking layer in organic photovoltaics. Phys. Chem. Chem. Phys. 2016, 18, 5444–5452.
Lee, M. Y.; Peng, J.; Wu, C. C. Geometric effect of copper nanoparticles electrodeposited on screen-printed carbon electrodes on the detection of alpha-, beta- and gamma-amino acids. Sens. Actuator B-Chem. 2013, 186, 270–277.
Lee, W.; An, Y.; Yoon, H.; Kweon, H.-S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008, 27, 1915–1921.
Leighton, W. G.; Forbes, G. S. Precision actinometry with uranyl oxalate. J. Am. Chem. Soc. 1930, 52, 3139–3152.
Lin, C. J.; Hsu, C. S.; Wang, P. Y.; Lin, Y. L.; Lo, Y. S.; Wu, C. H. Photochemical redox reactions of copper(II)-alanine complexes in aqueous solutions. Inorg. Chem. 2014, 53, 4934–4943.
Liu, L.; Li, R.; Liu, Y.; Zhang, J. Simultaneous degradation of ofloxacin and recovery of Cu(II) by photoelectrocatalysis with highly ordered TiO2 nanotubes. J. Hazard. Mater. 2016, 308, 264–275.
Lohmann, W. Charge-transfer interactions of aliphatic amino acids with metal ions. Z. Naturforsch. 1971, 26 b, 1098–1101.
Long, X.; Xi, Y.; Zhang, A. Q.; Yang, H. S. Progress in photochemistry of copper in aquatic systems. Prog. Chem. 2005, 17, 412–416.
Meng, C.; Yang, K.; Fu, X. Z.; Yuan, R. S. Photocatalytic oxidation of benzyl alcohol by homogeneous CuCl2/solvent: A model system to explore the role of molecular oxygen. ACS Catal. 2015, 5, 3760–3766.
Moss, M. L.; Mellon, M. G. Colormetric determination of copper with 1,10-phenanthroline. Ind. Engin. Chem. 1943, 15, 116–118.
Pitts, J. N.; Wan, J. K. S.; Schuck, E. A. Photochemical studies in an alkali halide matrix. I. An o-nitrobenzaldehyde actinometer and its application to a kinetic study of the photoreduction of benzophenone by benzhydrol in a pressed potassium bromide disk. J. Am. Chem. Soc. 1964, 86, 3606–3610.
Raven, J. A.; Evans, M. C. W.; Korb, R. E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 1999, 60, 111–149.
Rorabacher, D. B. Electron transfer by copper centers. Chemical Reviews 2004, 104, 651–697.
Salamone, M.; Basili, F.; Bietti, M. Reactivity and selectivity patterns in hydrogen atom transfer from amino acid C-H bonds to the cumyloxyl radical: Polar effects as a rationale for the preferential reaction at proline residues. J. Org. Chem. 2015, 80, 3643–3650.
Semeniuk, D. M.; Bundy, R. M.; Payne, C. D.; Barbeau, K. A.; Maldonado, M. T. Acquisition of organically complexed copper by marine phytoplankton and bacteria in the northeast subarctic Pacific Ocean. Mar. Chem. 2015, 173, 222–233.
Shannonhouse, J. L.; DuBois, D. W.; Fincher, A. S.; Vela, A.; Henry, M.; Wellman, P. J.; Frye, G. D.; Morgan, C. Fluoxetine disrupts motivation and GABAergic signaling in adolescent female hamsters. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2016, 69, 19–30.
Smith, A. E.; Martell, R. M.; Motekaitis, R. J., NIST critically selected stability constants of metal complexes database version 4.0; United States Department of Commerce–NIST: U.S.A, 1995.
Smith, G. F.; McCurdy, W. H. J. 2,9-dimethyl-1,10-phenanthroline. New specific in spectrophotometric determinatin of copper. Anal. Chem. 1952, 24, 371–373.
Smith, G. F.; Wilkins, D. H. New colorimetric reagent specific for copper—determination of copper in iron. Anal. Chem. 1953, 25, 510–511.
Song, L.; Connolly, M.; Fernandez-Cruz, M. L.; Vijver, M. G.; Fernandez, M.; Conde, E.; de Snoo, G. R.; Peijnenburg, W. J. G. M.; Navas, J. M. Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 2014, 8, 383–393.
Sun, J. M.; Lu, R. S.; Bau, R.; Yang, G. K. Oxidative addition of silanes to cyclopentadienylbis(phosphine)carbonylmanganese—fluxional behavior of manganese silyl hydride complexes. Organometallics 1994, 13, 1317–1325.
Sunda, W. G.; Guillard, R. R. L. Relationship between cupric ion activity and toxicity of copper to phytoplankton. J. Mar. Res. 1976, 34, 511–529.
Sykora, J. Photochemistry of copper complexes and their environmental aspects. Coord. Chem. Rev. 1997, 159, 95–108.
Togashi, T.; Hitaka, H.; Ohara, S.; Naka, T.; Takami, S.; Adschiri, T. Controlled reduction of Cu2+ to Cu+ with an N,O-type chelate under hydrothermal conditions to produce Cu2O nanoparticles. Mater. Lett. 2010, 64, 1049–1051.
Willett, L. K.; Hites, R. A. Chemical actinometry: Using o-nitrobenzaldehyde to measure light intensity in photochemical experiments. J. Chem. Educ. 2000, 77, 900–902.
Wu, C. H.; Sun, L. Z.; Faust, B. C. Photochemical formation of copper(I) from copper(II)-dicarboxylate complexes: Effects of outer-sphere versus inner-sphere coordination and of quenching by malonate. J. Phys. Chem. A 2000, 104, 4989–4996.
Xu, G.; Jiang, Y.; Tao, R.; Wang, S.; Zeng, H.; Yang, S. A recyclable biotransformation system for L-2-aminobutyric acid production based on immobilized enzyme technology. Biotechnol. Lett. 2016, 38, 123–129.
Yokoi, H.; Isobe, T. ESR and optical absorption studies of copper(II) complexes of ethylenediamine and its alkyl derivatives. Bull. Chem. Soc. Jpn. 1969, 42, 2187–2193.
Yuan, X.; Pham, A. N.; Xing, G.; Rose, A. L.; Waite, T. D. Effects of pH, chloride, and bicarbonate on Cu(I) oxidation kinetics at circumneutral pH. Environ. Sci. Technol. 2012, 46, 1527–1535.
Zak, B. Simple procedure for the single sample determination of serum copper and iron. Clin. Chim. Acta 1958, 3, 328–348.