簡易檢索 / 詳目顯示

研究生: 丁玉惟
Ngoc-Duy Dinh
論文名稱: Separating and Focusing Cells and Particles Via Dielectrophoresis Based on Characteristic and Size of Particles
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 60
中文關鍵詞: Cell separationcell focuslab-on-Chipdielectrophoresismanipulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Manipulation techniques are very important in biology research. Add to micro-nano technology fabrication to achieving on the research, the Lab-on-Chip for separating and focusing bioparticles is developed. Cell sorting or cell separation and focus are an important stage in biotechnology and biomedical processing which to extract or analytic form a mixture complex. The term AC electrokinetics refers to the movement of particles using AC electric fields. An AC electric field induces a frequency-dependent dipole on a polarizable particle. The interaction between the dipole and the non-uniform electric field is such that the particle experiences a force. This effect is called dielectrophoresis (DEP) which is the common method for the manipulation of bio-particles.
    In this thesis, we present a microsystem lab chip with high throughput continuous separation cell and particle characterization and focus via dielectrophoresis (DEP) and separation and focus particle based on size of particle. The particles are focus of hydrodynamic force by the design three inlets and will be deflected to separation and focus by control hydrodynamic drag and dielectrophoresis force. We design two electrode systems are separation electrode system and focus electrode system. The experiments are demonstrated with polystyrene (PS) beads 8 µm, 25µm and HepG2 cells (Human Liver cells) in suspension DEP buffer solution. Under a voltage 10 V peak-peak and frequency 100 kHz suitable, different characteristic particles have different DEP forces. Thus, the different distances of deflection that mean sample are separated. Then, the separated particle is focused for collection or optical detection application. Separation and focus based on size of particle is demonstrated on bead 8 µm and 15 µm.


    Table of Content Chapter 1. Introduction 1 1. 1 Background and Motivation 1 1.2 Survey of Literature 2 1. 2. 1 Manipulation Bioparticles Techniques 2 1. 2. 2 Dielectrophoresis(DEP) for Bioparticles Separation 4 Chapter 2. Device Development 17 2.1 Fundamental Theory 17 2.1.1 Theory of Dielectrophoresis 17 2.1.2 Theory of Electrokinetics 22 2.1.2.1 Electrical Double layer and ζ-Potential 22 2.1.2.2 Electroosomotic Flow 24 2.2 Design Concept 25 2.3 Simulation Analyses 27 2.3.1 Simulation of Separation and Focus Electrode 27 2.3.2 Theoretical Analysis 30 Chapter 3. Micro Fabrication 34 Process Flow and Results 34 Chapter 4. Experimental Setup and Results 37 4.1 Experimental Setup 37 4.2 Experiment Results 38 4.2.1 The Biology Experiment 38 4.2.2 High Throughput & Separation and Focus(characteristic and size) 42 Chapter 5. Conclusion and Future Works 53 5.1 Summary 53 5.2 Discussion ans Future Works 53

    Reference
    [1] A. J. de Mello and N. Beard, “Dealing with ‘real’ samples: sample pre-treatment in microfluidic systems,” Lab Chip, vol. 3, pp. 11N-19N, 2003
    [2] E. W. H. Jager, O. Inganas, and I. Lundstrom, “Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation,” Science, vol. 288, pp. 2335-2338, 2000.
    [3] P. Gascoyne and J. Satayavivad, M. Ruchirawat, “Microfluidic approaches to malaria detection,” Acta Trop., vol. 89, pp. 357-369, 2004
    [4] P. Vulto, G. M, L. A, G. A. Urban, M. Tartagni, R. G, and N. Manaresi, “Selective sample recovery of DEP-separated cells and particles by phaseguide-controlled laminar flow,” J. Micromech. Microeng., vol.16, pp. 1847-1853, 2006.
    [5] C. Iliescu, G. L. Xu, P. L. Ong, and K. J. Leck, “Dielectrophoretic separation of biological samples in a 3D filtering chip,” J. Micromech. Microeng., vol. 17, pp. S128–S136, 2007.
    [6] S. Choi and J. K. Park, “Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array,” Lab Chip, vol. 5, pp. 1161-1167, 2005
    [7] C.T Kuo and C.H Liu, ‘’ A novel microfluidic driver via AC electrokinetics’’, Lab Chip, 2008, 8, 725 - 733
    [8] J. M. Choi, C. H. Ahn, S. Bhansali, and H. T. Henderson,“A new magnetic bead-based, filterless bio-separaton with planar electromagnet surfaces for integrated bio-detection systems,” Sens. Actuators B., vol. 68, pp. 34–39, 2000.
    [9] Xiaole Mao, T.J Huang ‘’Single-layerplanar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydro- dynamic and focusing’’ Lab Chip, 2009
    [10] Jinjie Shi, T.JHuang ‘’Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW)’’ Lab Chip, 2009, 9, 2890-2895
    [11]

    [12] David G. Grier ‘’A revolution in optical manipulation’’Nature 424, 810-816, 2003
    P. Y. Chiou, A. T. Ohta, and M. C. Wu, "Massively parallel manipulation of single cells and microparticles using optical images," Nature, 2005,436, 370-372
    [13] Nicole Pamme, ‘’ Continuous flow separations in microfluidic devices’’, Lab Chip, 2007, 7, 1644
    [14] M. Kersaudy-Kerhoas, R. D and M.P.Y. Desmulliez, "Recent advances in microparticle continuous separation", IET Nanobiotechnology -- March 2008 Volume 2, Issue 1, p. 1-13
    [15] Sungyoung Choi and Je-Kyun Park, ‘’ Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array’’, Lab Chip, 2005, 5, 1161-1167
    [16] Xiaoyuan Hu, Paul H. B, J.Q, Carl D. M, Patrick S. Da, and H T. Soh, ‘’Marker-specific sorting of rare cells using dielectrophoresis’’, PNAS, November 1, 2005 , vol. 102 , no. 44, 15757–15761
    [17] Jason G. Kralj, Michael T. W. Lis, Martin A. S, and Klavs F. Jensen’’Continuous Dielectrophoretic Size-Based Particle Sorting’’, Anal. Chem., 2006, 78 (14), pp 5019–5025
    [18] Thomas B, Nicolas D, E.N, Tiago Silva, Abel G. Oliva and Philippe Renaud
    ‘’Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies’’ Lab Chip, 2008, 8, 280-286
    [19] Sunghwan Chang and Y-H Cho, ‘’A continuous size-dependent particle separator using a negative dielectrophoretic virtual pillar array’’, Lab Chip, 2008, 8, 1930-1936
    [20] Ki-Ho Han and A. Bruno Frazier, ‘’Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium’’, Lab Chip, 2008, 8, 1079-1086
    [21] C-H Hsu, Dino D.C, Chihchen C, D. I and Mehmet Toner, ‘’Microvortex for focusing, guiding and sorting of particles’’, Lab Chip, 2008, 8, 2128-2134
    [22] M. D. Vahey and J. Voldman, ‘’High-Throughput Cell and Particle Characterization Using Isodielectric Separation’’, Anal. Chem., 2009, 81 (7), pp 2446–2455
    [23] Unyoung Kim and H. Tom Soh, ‘’Simultaneous sorting of multiple bacterial targets using integrated Dielectrophoretic–Magnetic Activated Cell Sorter’’, Lab Chip, 2009, 9, 2313-2318
    [24] Jason P. B, Peter J□nsson and Jonas O. Tegenfeldt, ‘’Tipping the balance of deterministic lateral displacement devices using dielectrophoresis’’, Lab Chip, 2009, 9, 2698-2706
    [25] K-H Han, S-I Han and A. Bruno Frazier, ‘’Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array’’, Lab Chip, 2009, 9, 2958-2964
    [26]

    [27]

    [28]
    H-H Cui, Joel Voldman, X-F He and K-M Lim, ‘’Separation of particles by pulsed dielectrophoresis’’, Lab Chip, 2009, 9, 2306-2312
    Junjie Zhu, Tzuen-Rong Tzeng and Xiangchun Xuan, ‘’ Continuous dielectrophoretic separation of particles in a spiral microchannel’’, Electrophorsis., 2010, 31, 1382-1388
    Hadi Shafiee and Rafael V. Davalos, ‘’ Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP)’’, Lab Chip, 2010, 10, 438-44
    [29]

    [30]

    [31] C.H. Kua, Y.C. Lam, C. Yang and K. Youcef-Toumi, “Review of bio-particle manipulation using dielectrophoresis,” Innovation in Manufacturing Systems and Technology (IMST), Jan, 2005.
    Pohl HA, ‘’Dielectrophoresis’’, New York, Cambridge University Press; 1978
    Jones TB, ‘’Electromechanics of Particles’’, New York: Cambridge University Press; 1995
    [32] R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol, 15, 426–432, 1997.
    [33]

    [34]

    [35]

    [36] Hsin-Yu Wu and Cheng-Hsien Liu, “An electrokinetic micromixer for micro-fluidic bio-chip application,” Master Thesis, Department of PME, NTHU, 2003
    Morgan, H., Green, N. and Sun, T, ‘’Electrokinetics of Particles and Fluids.’’ In: Microtechnology and Nanotechnology in Biomedical Applications, Oxford University Press. (In Press) 2008
    Nicolas G Green and Thomas B Jones, ‘’Numerical determination of the effective moments of non-spherical particles’’, J. Phys. D: Appl. Phys. 2007, 40, 78–85
    Chin Hock Kua, Yee Cheong Lam, Isabel Rodriguez, Chun Yang and Kamal Youcef-Toumi. ‘’ Cell Motion Model for Moving Dielectrophoresis’’ Anal. Chem., 2008, 80, 5454–5461
    [37] Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics, 2nd ed.; Kluwer Academic: Dordrecht, 1991.
    [38]

    [39]

    [40]

    [41]

    [42]

    [43]

    [44]

    [45]

    [46]

    [47] E. A. Jaffe, R. L. Nachman, C. G. Becker and C. R. Minick, Culture of human endothelial cells derived from umbilical veins, identification by morphologic and immunological criteria, J. Clin. Invest., 1973, 52, 2745–2756
    Chen-Ta Ho, Ruei-Zeng Lin, Wen-Yu Chang, Hwan-You Chang and Cheng-Hsien Liu, ‘’ Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap’’, Lab Chip, 2006, 6, 724 – 734
    Joel Voldman, ‘’ Electrical forces for microscale cell manipulation”, Annu.Rev.Biomed.Eng, 2006, 8, 425-454
    Joel Voldman, ‘’ Dielectrophoretic traps for cell manipulation’’ Book chapter, Biomems and Biomedical Nanotechnology, Volume IV: Biomolecular Sensing, Processing and Analysis, Springer US, 2007, 159-186
    Masaru Hakoda , Yoshikazu Wakizaka , Yusuke Hirota, ‘’ Separation of viable and nonviable animal cell using dielectrophoretic filter’’, Biotechnology Progress, 2010
    Yang L, Ruan C, and Li Y, ‘’Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance.’’ Biosens Bioelectron, 2003, 9, 495-502
    Yang L, Banada PP, Bhunia AK and Bashir R, ‘’ Effects of Dielectrophoresis on Growth, Viability and Immuno-reactivity of Listeria monocytogenes’’, J Biol Eng, 2008, 2, 6
    Yunus, N. A. M. and Green, N. G, ‘’Continuous Separation of Submicron Particles Using Angled Electrodes’’, Electrostatics 2007, 142, 12068
    Morgan H, Hughes MP and Green NG, ‘’Separation of submicron bioparticles by dielectrophoresis’’, Biophys J .1999, 42, 279-293
    Nicolas G. Green and Hywel Morgan, ‘’Dielectrophoresis of Submicrometer Latex Spheres 1. Experimental Results’’, J. Phys. Chem. B, 1999, 103 (1), 41–50

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE