研究生: |
李克駿 Lee, Ko-Chun |
---|---|
論文名稱: |
二硒化錸元件在仿神經運算應用之研究 The Study of ReSe2 Devices for Neuromorphic Applications |
指導教授: |
連振炘
Lien, Chen-Hsin |
口試委員: |
賴朝松
Lai, Chao-Sung 侯拓宏 Hou, Tuo-Hung 張鼎張 Chang, Ting-Chang 林彥甫 Lin, Yen-Fu |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 87 |
中文關鍵詞: | 二硒化錸元件 、仿神經運算 、二維材料 、雙極性 、非揮發記憶體 、突觸元件 |
外文關鍵詞: | ReSe2 Devices, Neuromorphic Computing, 2D materials, ambipolar, NVM, synaptic device |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以一個全二維結構材料製作的二硒化錸電晶體為基礎,討論其雙極性電學特性以及其應用,後續延伸到其未來發展。該研究以機械剝離法分離出雙層二硒化錸作為電晶體通道、六方氮化硼做為閘極絕緣體層及石墨烯作為電極/電荷儲存層,並搭配採用乾式轉印堆疊出全二維結構的二硒化錸場效電晶體/浮閘非揮發性記憶體。
首先就電晶體部分,量測其基本雙極性傳輸電性並利用Y函數法(Y-function method)得出元件在室溫下的電子與電洞之載子遷移率。後續進行變溫量測,了解在低溫下該電晶體之電學特性變化,進一步分析接點蕭特基位障(Schottky barrier)的變化,並檢驗以石墨烯作為電極之優劣。蕭特基位障隨閘極電壓而改變,在n型傳輸中位障高度可降至能忽略(~0 eV)之高度,形成歐姆接觸(Ohmic contact),而在p型傳輸中也能降低至30mV。後續更進一步透過低頻雜訊(Low Frequency noise)的量測,驗證石墨烯作為電極接點之品質,綜合上述結果證明了全二維結構二硒化錸電晶體利用石墨烯作為電極,相較於傳統金屬(Ti/Au)電極有著良好的特性。
深入了解、驗證全二維結構的二硒化錸場效電晶體後,我們展現其能在互補式金屬氧化物半導體設計中同時扮演上拉(pull-up)以及下拉(pull-down)元件,為二維電晶體難以控制參雜問題提供一個另類的解決方式;透過其用在反向器(inverter)中上拉或下拉元件之實際演示,均得到峰對峰(rail-to-rail)的結果。此外本論文提出另一個加上額外兩個源極、汲極兩個控制閘(Source/Drain edge Gate)的結構,通過在通道上施加不對稱的電場來調控其局部能帶,使原本的雙極性傳輸電晶體改變成單極性且可調的n型電子傳輸或p型電洞傳輸的半導體元件,在同一元件上實現不同載子傳輸的元件特性。
經對該結構深入研究之後,我們朝著仿神經型態計算架構去討論。全二維結構的二硒化錸場效電晶體經微幅修改即成為一個全二維浮閘非揮發性半導體記憶體,以該元件之等校電阻具連續可調之特性,成功應用在仿神經型態計算上。在這部分研究中討論了電/光的輸入方式,電訊號輸入類比大腦神經突觸元件,而因二硒化錸優秀的感光特性,加上元件的結構設計,光訊號輸入也可在同一元件上實現,可應用在視神經的神經突觸元件。再者,兩端及三端之兩種操作方式在該論文中被提出,其中兩端的結構更貼近真實神經元。
This thesis is about the ambipolar characteristics and its applications of a ReSe2 field-effect transistor (FET) and synaptic device. The whole device is fabricated by 2D materials, double-/multi- layered selenium telluride (ReSe2) as channel material, hexagonal boron nitride (hBN) as gate insulator material and multi-layered graphene (Gr) as electrode or charge storage layer. All the materials use mechanical exfoliation with dry transfer to stack the and build all-2D heterostructures. It shows the potential of the all-2D ReSe2 stacked structure. Also, the atomic flat and free dangling bond surface stem from all-2D materials can purify the device conditions for a better examination of physics inside.
About the FET part, the electrical signal was measured to characterize its ambipolar characteristic and analysis the contact resistance, electron and hole mobility under room temperature. After that, transfer characteristics at different temperatures were measured and Schottky barrier height of the contacts was carried out for examining the quality of the Gr contact. The Schottky barrier height was varied as the gate voltage;a smaller barrier height was obtained at higher Vbg, approaching 30 meV at Vbg = –6 V and becoming negligible at Vbg = 5 V. Moreover, it was examined by low-frequency noise measurement and found that the barrier can be negligible at Vbg = 5 V and become slightly larger while Vbg = –6 V. All analysis points out Gr is a good contact material for ReSe2.
After been examined the device design, the feasibility of the ReSe2 FET in CMOS logic circuits was confirmed by fabricating inverters composed of the ReSe2 FET as pull-up and pull-down devices. The results of both conditions achieved rail-to-rail output. This demonstrates ambipolar transport as an alternative solution for the bad doping control issue of the 2D FET. Another p/n switchable uni-polar ReSe2 FET structure that can suppress ambipolar current with two extra gates was proposed. The channel potential was tuned partially by extra gates hence a controllable p or n carriers transport within a signal device.
After an in-depth study of the device structure, the potential as a device for building neuromorphic computing architecture had been studied. The 2D structure of the ReSe2 FET has been slightly modified to become a full two-dimensional floating gate non-volatile memory (NVM), which equivalent resistance is continuously adjustable and can apply on the neuromorphic system as a synaptic device. In this part of the study, the input methods of electric and optical are discussed. The electrical signal input is analogous to the brain synaptic component. However, due to the excellent photo sensitivity characteristics of the ReSe2 and the structural design of the device, the optical signal can also be applied as an input on the same device. In other words, an optical synaptic device was implemented. Furthermore, it can serve as a two-terminal and three-terminal synaptic device. Both two- and three-terminal mode can tunnel its training strength by the voltage.
[1] S. E. Thompson and S. Parthasarathy, "Moore's law: the future of Si microelectronics," Materials Today, vol. 9, no. 6, pp. 20-25, 2006.
[2] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited, 2016.
[3] S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada, O. Ichikawa, N. Fukuhara, M. Hata, and M. Takenaka, "High mobility CMOS technologies using III–V/Ge channels on Si platform," Solid-State Electronics, vol. 88, pp. 2-8, 2013.
[4] R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, and F. Zamora, "2D materials: to graphene and beyond," Nanoscale, vol. 3, no. 1, pp. 20-30, Jan 2011.
[5] S. Bangsaruntip, Balakrishnan, K., Cheng, S.L., Chang, J., Brink, M., Lauer, I., Bruce, R.L., Engelmann, S.U., Pyzyna, A., Cohen, G.M. and Gignac, L.M., , "Density scaling with gate-all-around silicon nanowire MOSFETs for the 10 nm node and beyond," 2013 IEEE International Electron Devices Meeting, pp. pp. 20-2, 2013.
[6] M. Chiang and T. Zhang, "Fog and IoT: An Overview of Research Opportunities," IEEE Internet of Things Journal, vol. 3, no. 6, pp. 854-864, 2016.
[7] J. H. Lau and T. G. Yue, "Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration system-in-package (SiP)," Microelectronics Reliability, vol. 52, no. 11, pp. 2660-2669, 2012.
[8] J. Knoch, S. Mantl, and J. Appenzeller, "Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices," Solid-State Electronics, vol. 51, no. 4, pp. 572-578, 2007.
[9] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano Lett, vol. 8, no. 2, pp. 405-10, Feb 2008.
[10] R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, "Synthetic analog computation in living cells," Nature, vol. 497, no. 7451, pp. 619-23, May 30 2013.
[11] Z.-R. Wang, Y.-T. Su, Y. Li, Y.-X. Zhou, T.-J. Chu, K.-C. Chang, T.-C. Chang, T.-M. Tsai, S. M. Sze, and X.-S. Miao, "Functionally Complete Boolean Logic in 1T1R Resistive Random Access Memory," IEEE Electron Device Letters, vol. 38, no. 2, pp. 179-182, 2017.
[12] C. Pan and A. Naeemi, "An Expanded Benchmarking of Beyond-CMOS Devices Based on Boolean and Neuromorphic Representative Circuits," IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 3, pp. 101-110, 2017.
[13] W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing, and R. Mahnkopf, "More-than-Moore white paper," vol. 2, p. 14, 2010.
[14] J. Y. Lee, J. H. Shin, G. H. Lee, and C. H. Lee, "Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures," Nanomaterials (Basel), vol. 6, no. 11, Oct 27 2016.
[15] Y. Tang and K. F. Mak, "Nanomaterials: 2D materials for silicon photonics," Nat Nanotechnol, vol. 12, no. 12, pp. 1121-1122, Dec 2017.
[16] B. Li, L. Huang, M. Zhong, Y. Li, Y. Wang, J. Li, and Z. Wei, "Direct Vapor Phase Growth and Optoelectronic Application of Large Band Offset SnS2/MoS2Vertical Bilayer Heterostructures with High Lattice Mismatch," Advanced Electronic Materials, vol. 2, no. 11, 2016.
[17] K. C. Lee, S. H. Yang, Y. S. Sung, Y. M. Chang, C. Y. Lin, F. S. Yang, M. Li, K. Watanabe, T. Taniguchi, C. H. Ho, C. H. Lien, and Y. F. Lin, "Analog Circuit Applications Based on All‐2D Ambipolar ReSe2 Field‐Effect Transistors," Advanced Functional Materials, 2019.
[18] A. Pezeshki, S. H. Shokouh, T. Nazari, K. Oh, and S. Im, "Electric and Photovoltaic Behavior of a Few-Layer alpha-MoTe2 /MoS2 Dichalcogenide Heterojunction," Adv Mater, vol. 28, no. 16, pp. 3216-22, Apr 2016.
[19] R. Wu, Q. Tao, W. Dang, Y. Liu, B. Li, J. Li, B. Zhao, Z. Zhang, H. Ma, G. Sun, X. Duan, and X. Duan, "van der Waals Epitaxial Growth of Atomically Thin 2D Metals on Dangling‐Bond‐Free WSe2 and WS2," Advanced Functional Materials, vol. 29, no. 12, 2019.
[20] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, "2D materials and van der Waals heterostructures," Science, vol. 353, no. 6298, p. aac9439, Jul 29 2016.
[21] M.-Y. Li, C.-H. Chen, Y. Shi, and L.-J. Li, "Heterostructures based on two-dimensional layered materials and their potential applications," Materials Today, vol. 19, no. 6, pp. 322-335, 2016.
[22] R. Cheng, F. Wang, L. Yin, Z. Wang, Y. Wen, T. A. Shifa, and J. He, "High-performance, multifunctional devices based on asymmetric van der Waals heterostructures," Nature Electronics, vol. 1, no. 6, pp. 356-361, 2018.
[23] G. S. Duesberg, "Heterojunctions in 2D semiconductors: A perfect match," Nat Mater, vol. 13, no. 12, pp. 1075-6, Dec 2014.
[24] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, "Boron nitride substrates for high-quality graphene electronics," Nat Nanotechnol, vol. 5, no. 10, pp. 722-6, Oct 2010.
[25] J. D. Thomsen, T. Gunst, S. S. Gregersen, L. Gammelgaard, B. S. Jessen, D. M. A. Mackenzie, K. Watanabe, T. Taniguchi, P. Bøggild, and T. J. Booth, "Suppression of intrinsic roughness in encapsulated graphene," Physical Review B, vol. 96, no. 1, 2017.
[26] H. Tian, Z. Tan, C. Wu, X. Wang, M. A. Mohammad, D. Xie, Y. Yang, J. Wang, L. J. Li, J. Xu, and T. L. Ren, "Novel field-effect Schottky barrier transistors based on graphene-MoS2 heterojunctions," Sci Rep, vol. 4, p. 5951, Aug 11 2014.
[27] M. H. Guimaraes, H. Gao, Y. Han, K. Kang, S. Xie, C. J. Kim, D. A. Muller, D. C. Ralph, and J. Park, "Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials," ACS Nano, vol. 10, no. 6, pp. 6392-9, Jun 28 2016.
[28] X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang, A. L. Hsu, Y. Bie, Y. H. Lee, Y. Zhu, L. Wu, J. Li, P. Jarillo-Herrero, M. Dresselhaus, T. Palacios, and J. Kong, "Parallel Stitching of 2D Materials," Adv Mater, vol. 28, no. 12, pp. 2322-9, Mar 23 2016.
[29] H.-L. Tang, M.-H. Chiu, C.-C. Tseng, S.-H. Yang, K.-J. Hou, S.-Y. Wei, J.-K. Huang, Y.-F. Lin, C.-H. Lien, and L.-J. Li, "Multilayer Graphene-WSe2 Heterostructures for WSe2 Transistors," ACS Nano, vol. 11, no. 12, pp. 12817-12823, Dec 26 2017.
[30] T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, and A. Javey, "Field-effect transistors built from all two-dimensional material components," ACS Nano, vol. 8, no. 6, pp. 6259-64, Jun 24 2014.
[31] H. Jeong, S. Bang, H. M. Oh, H. J. Jeong, S. J. An, G. H. Han, H. Kim, K. K. Kim, J. C. Park, Y. H. Lee, G. Lerondel, and M. S. Jeong, "Semiconductor-Insulator-Semiconductor Diode Consisting of Monolayer MoS2, h-BN, and GaN Heterostructure," ACS Nano, vol. 9, no. 10, pp. 10032-8, Oct 27 2015.
[32] K. Choi, Y. T. Lee, J. S. Kim, S.-W. Min, Y. Cho, A. Pezeshki, D. K. Hwang, and S. Im, "Non-Lithographic Fabrication of All-2D α-MoTe2 Dual Gate Transistors," Advanced Functional Materials, vol. 26, no. 18, pp. 3146-3153, 2016.
[33] M. C, "Machine Learning Security IBM Seoul compressed version," https://www.slideshare.net/eburon/machine-learning-security-ibm-seoul-compressed-version, 2017.
[34] V. Valkov, "Creating a Neural Network from Scratch — TensorFlow for Hackers (Part IV)," https://medium.com/@curiousily/tensorflow-for-hackers-part-iv-neural-network-from-scratch-1a4f504dfa8, 2017.
[35] S. Hamdioui, Xie, L., Nguyen, H.A.D., Taouil, M., Bertels, K., Corporaal, H., Jiao, H., Catthoor, F., Wouters, D., Eike, L. and van Lunteren, J.,, "Memristor based computation-in-memory architecture for data-intensive applications," Proceedings of the 2015 design, automation & test in Europe conference & exhibition, pp. 1718-1725, 2015.
[36] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha, "Artificial brains. A million spiking-neuron integrated circuit with a scalable communication network and interface," Science, vol. 345, no. 6197, pp. 668-73, Aug 8 2014.
[37] C. Mead, "Neuromorphic electronic systems," Proceedings of the IEEE, vol. 78, no. 10, pp. 1629-1636, 1990.
[38] D. Kuzum, S. Yu, and H. S. Wong, "Synaptic electronics: materials, devices and applications," Nanotechnology, vol. 24, no. 38, p. 382001, Sep 27 2013.
[39] B. Liu, Z. Liu, I. S. Chiu, M. Di, Y. Wu, J. C. Wang, T. H. Hou, and C. S. Lai, "Programmable Synaptic Metaplasticity and below Femtojoule Spiking Energy Realized in Graphene-Based Neuromorphic Memristor," ACS Appl Mater Interfaces, vol. 10, no. 24, pp. 20237-20243, Jun 20 2018.
[40] A. Pantazi, S. Wozniak, T. Tuma, and E. Eleftheriou, "All-memristive neuromorphic computing with level-tuned neurons," Nanotechnology, vol. 27, no. 35, p. 355205, Sep 2 2016.
[41] D. Ielmini and H. S. P. Wong, "In-memory computing with resistive switching devices," Nature Electronics, vol. 1, no. 6, pp. 333-343, 2018.
[42] M. Ziegler and H. Kohlstedt, "Mimic synaptic behavior with a single floating gate transistor: A MemFlash synapse," Journal of Applied Physics, vol. 114, no. 19, 2013.
[43] S. Ramakrishnan, P. E. Hasler, and C. Gordon, "Floating Gate Synapses With Spike-Time-Dependent Plasticity," IEEE Transactions on Biomedical Circuits and Systems, vol. 5, no. 3, pp. 244-252, 2011.
[44] P. Hasler, C. Diorio, B. A. Minch, and C. Mead, "Single transistor learning synapse with long term storage," in Proceedings of ISCAS'95-International Symposium on Circuits and Systems, 1995, vol. 3, pp. 1660-1663: IEEE.
[45] Y. van de Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. Alec Talin, and A. Salleo, "A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing," Nature Materials, vol. 16, no. 4, pp. 414-418, 2017.
[46] R. A. John, F. Liu, N. A. Chien, M. R. Kulkarni, C. Zhu, Q. Fu, A. Basu, Z. Liu, and N. Mathews, "Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity," Advanced Materials, vol. 30, no. 25, 2018.
[47] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," Nano Lett, vol. 10, no. 4, pp. 1297-301, Apr 14 2010.
[48] L. F. Abbott and S. B. Nelson, "Synaptic plasticity: taming the beast," Nat Neurosci, vol. 3 Suppl, pp. 1178-83, Nov 2000.
[49] H. Tian, X. Wang, F. Wu, Y. Yang, and T.-L. Ren, "High Performance 2D Perovskite/Graphene Optical Synapses as Artificial Eyes," in 2018 IEEE International Electron Devices Meeting (IEDM), 2018, pp. 38.6. 1-38.6. 4: IEEE.
[50] T. Euler, P. B. Detwiler, and W. Denk, "Directionally selective calcium signals in dendrites of starburst amacrine cells," Nature, vol. 418, no. 6900, p. 845, 2002.
[51] H. Tian, Q. Guo, Y. Xie, H. Zhao, C. Li, J. J. Cha, F. Xia, and H. Wang, "Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications," Advanced Materials, vol. 28, no. 25, pp. 4991-4997, 2016.
[52] M. T. Sharbati, Y. Du, J. Torres, N. D. Ardolino, M. Yun, and F. Xiong, "Low-Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing," Advanced Materials, vol. 30, no. 36, 2018.
[53] Y. Shi, X. Liang, B. Yuan, V. Chen, H. Li, F. Hui, Z. Yu, F. Yuan, E. Pop, H. S. P. Wong, and M. Lanza, "Electronic synapses made of layered two-dimensional materials," Nature Electronics, vol. 1, no. 8, pp. 458-465, 2018.
[54] C. M. Corbet, S. S. Sonde, E. Tutuc, and S. K. Banerjee, "Improved contact resistance in ReSe2 thin film field-effect transistors," Applied Physics Letters, vol. 108, no. 16, p. 162104, 2016.
[55] B. Jariwala, D. Voiry, A. Jindal, B. A. Chalke, R. Bapat, A. Thamizhavel, M. Chhowalla, M. Deshmukh, and A. Bhattacharya, "Synthesis and Characterization of ReS2 and ReSe2 Layered Chalcogenide Single Crystals," Chemistry of Materials, vol. 28, no. 10, pp. 3352-3359, 2016.
[56] M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu, S. Wang, Y. Wang, D. A. Muller, and X. Zhang, "Large-scale chemical assembly of atomically thin transistors and circuits," Nat Nanotechnol, vol. 11, no. 11, pp. 954-959, Nov 2016.
[57] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene," Nature, vol. 438, no. 7065, pp. 197-200, Nov 10 2005.
[58] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H. J. Shin, S. Park, and W. J. Yoo, "Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides," ACS Nano, vol. 11, no. 2, pp. 1588-1596, Feb 28 2017.
[59] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, "The Unusual Mechanism of Partial Fermi Level Pinning at Metal–MoS2 Interfaces," Nano Letters, vol. 14, no. 4, pp. 1714-1720, 2014.
[60] H. J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tomanek, and Z. Zhou, "Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors," Nano Lett, vol. 16, no. 3, pp. 1896-902, Mar 9 2016.
[61] A. Allain, J. Kang, K. Banerjee, and A. Kis, "Electrical contacts to two-dimensional semiconductors," Nat Mater, vol. 14, no. 12, pp. 1195-205, Dec 2015.
[62] W. S. Leong, C. T. Nai, and J. T. Thong, "What does annealing do to metal-graphene contacts?," Nano Lett, vol. 14, no. 7, pp. 3840-7, Jul 9 2014.
[63] F. Leonard and A. A. Talin, "Electrical contacts to one- and two-dimensional nanomaterials," Nat Nanotechnol, vol. 6, no. 12, pp. 773-83, Nov 27 2011.
[64] A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom, and H. Dai, "Carbon nanotube field-effect transistors with integrated ohmic contacts and high-κ gate dielectrics," Nano Letters, vol. 4, no. 3, pp. 447-450, 2004.
[65] J.-K. Ho, C.-S. Jong, C. C. Chiu, C.-N. Huang, K.-K. Shih, L.-C. Chen, F.-R. Chen, and J.-J. Kai, "Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films," Journal of Applied Physics, vol. 86, no. 8, pp. 4491-4497, 1999.
[66] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
[67] A. Anwar, B. Nabet, J. Culp, and F. Castro, "Effects of electron confinement on thermionic emission current in a modulation doped heterostructure," Journal of Applied Physics, vol. 85, no. 5, pp. 2663-2666, 1999.
[68] A. A. Balandin, "Low-frequency 1/f noise in graphene devices," Nat Nanotechnol, vol. 8, no. 8, pp. 549-55, Aug 2013.
[69] M. Haartman and M. Östling, Low-frequency noise in advanced MOS devices. Springer Science & Business Media, 2007.
[70] S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, and S. H. Wei, "Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors," Nanoscale, vol. 6, no. 13, pp. 7226-31, Jul 7 2014.
[71] F. Cui, X. Li, Q. Feng, J. Yin, L. Zhou, D. Liu, K. Liu, X. He, X. Liang, S. Liu, Z. Lei, Z. Liu, H. Peng, J. Zhang, J. Kong, and H. Xu, "Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer," Nano Research, vol. 10, no. 8, pp. 2732-2742, 2017.
[72] J. Gu, Z. Q. Zhao, Y. Ding, H. L. Chen, Y. W. Zhang, and C. H. Yan, "Liquid-phase syntheses and material properties of two-dimensional nanocrystals of rare earth-selenium compound containing planar Se layers: RESe2 nanosheets and RE4O4Se3 nanoplates," J Am Chem Soc, vol. 135, no. 22, pp. 8363-71, Jun 5 2013.
[73] M. Hafeez, L. Gan, H. Li, Y. Ma, and T. Zhai, "Chemical Vapor Deposition Synthesis of Ultrathin Hexagonal ReSe2 Flakes for Anisotropic Raman Property and Optoelectronic Application," Adv Mater, vol. 28, no. 37, pp. 8296-8301, Oct 2016.
[74] D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, "Raman spectra of monolayer, few-layer, and bulk ReSe(2): an anisotropic layered semiconductor," ACS Nano, vol. 8, no. 11, pp. 11154-64, Nov 25 2014.
[75] E. Zhang, P. Wang, Z. Li, H. Wang, C. Song, C. Huang, Z. G. Chen, L. Yang, K. Zhang, S. Lu, W. Wang, S. Liu, H. Fang, X. Zhou, H. Yan, J. Zou, X. Wan, P. Zhou, W. Hu, and F. Xiu, "Tunable Ambipolar Polarization-Sensitive Photodetectors Based on High-Anisotropy ReSe2 Nanosheets," ACS Nano, vol. 10, no. 8, pp. 8067-77, Aug 23 2016.
[76] N. R. Pradhan, C. Garcia, B. Isenberg, D. Rhodes, S. Feng, S. Memaran, Y. Xin, A. McCreary, A. R. H. Walker, A. Raeliarijaona, H. Terrones, M. Terrones, S. McGill, and L. Balicas, "Phase Modulators Based on High Mobility Ambipolar ReSe2 Field-Effect Transistors," Sci Rep, vol. 8, no. 1, p. 12745, Aug 24 2018.
[77] A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, "Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping," 2D Materials, vol. 1, no. 1, 2014.
[78] F. P. Rouxinol, R. V. Gelamo, R. G. Amici, A. R. Vaz, and S. A. Moshkalev, "Low contact resistivity and strain in suspended multilayer graphene," (in English), Applied Physics Letters, vol. 97, no. 25, p. 253104, Dec 20 2010.
[79] G. Liu, S. Rumyantsev, M. Shur, and A. A. Balandin, "Graphene thickness-graded transistors with reduced electronic noise " Applied Physics Letters vol. 100, no. 3, p. 033103 December 2011 2012.
[80] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single- and few-layer MoS2," ACS Nano, vol. 4, no. 5, pp. 2695-700, May 25 2010.
[81] M. F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, "Tuneable electronic properties in graphene," Nano Today, vol. 6, no. 1, pp. 42-60, 2011.
[82] F. A. Chaves and D. Jimenez, "The Role of the Fermi Level Pinning in Gate Tunable Graphene-Semiconductor Junctions," IEEE Transactions on Electron Devices, vol. 63, no. 11, pp. 4521-4526, 2016.
[83] Y. W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, "Measurement of scattering rate and minimum conductivity in graphene," Phys Rev Lett, vol. 99, no. 24, p. 246803, Dec 14 2007.
[84] G. Ghibaudo, "New method for the extraction of MOSFET parameters," Electronics Letters, vol. 24, no. 9, pp. 543-545, 1988.
[85] M. Li, C. Y. Lin, S. H. Yang, Y. M. Chang, J. K. Chang, F. S. Yang, C. Zhong, W. B. Jian, C. H. Lien, C. H. Ho, H. J. Liu, R. Huang, W. Li, Y. F. Lin, and J. Chu, "High Mobilities in Layered InSe Transistors with Indium-Encapsulation-Induced Surface Charge Doping," Adv Mater, vol. 30, no. 44, p. e1803690, Nov 2018.
[86] M. K. Li, T. P. Chen, Y. F. Lin, C. M. Raghavan, W. L. Chen, S. H. Yang, R. Sankar, C. W. Luo, Y. M. Chang, and C. W. Chen, "Intrinsic Carrier Transport of Phase-Pure Homologous 2D Organolead Halide Hybrid Perovskite Single Crystals," Small, vol. 14, no. 52, p. e1803763, Dec 2018.
[87] K. K. H. Smithe, S. V. Suryavanshi, M. Munoz Rojo, A. D. Tedjarati, and E. Pop, "Low Variability in Synthetic Monolayer MoS2 Devices," ACS Nano, vol. 11, no. 8, pp. 8456-8463, Aug 22 2017.
[88] J. Y. Park, H. E. Joe, H. S. Yoon, S. Yoo, T. Kim, K. Kang, B. K. Min, and S. C. Jun, "Contact Effect of ReS2/Metal Interface," ACS Appl Mater Interfaces, vol. 9, no. 31, pp. 26325-26332, Aug 9 2017.
[89] Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek, and G. Ghibaudo, "Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors," Journal of Applied Physics, vol. 107, no. 11, p. 114507, 2010.
[90] S. Y. Hu, C. H. Liang, K. K. Tiong, Y. S. Huang, and Y. C. Lee, "Electrical Anisotropy of W-Doped ReSe[sub 2] Crystals," Journal of The Electrochemical Society, vol. 153, no. 8, 2006.
[91] Y. F. Lin, Y. Xu, S. T. Wang, S. L. Li, M. Yamamoto, A. Aparecido-Ferreira, W. Li, H. Sun, S. Nakaharai, W. B. Jian, K. Ueno, and K. Tsukagoshi, "Ambipolar MoTe2 transistors and their applications in logic circuits," Adv Mater, vol. 26, no. 20, pp. 3263-9, May 28 2014.
[92] W. Chen, R. Liang, J. Wang, S. Zhang, and J. Xu, "Enhanced photoresponsivity and hole mobility of MoTe 2 phototransistors by using an Al 2 O 3 high-κ gate dielectric," Science Bulletin, vol. 63, no. 15, pp. 997-1005, 2018.
[93] S. Das, M. Demarteau, and A. Roelofs, "Ambipolar Phosphorene Field Effect Transistor," ACS Nano, vol. 8, no. 11, pp. 11730-11738, 2014/11/25 2014.
[94] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, "Black phosphorus field-effect transistors," Nat Nanotechnol, vol. 9, no. 5, pp. 372-7, May 2014.
[95] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, "Degenerate n-doping of few-layer transition metal dichalcogenides by potassium," Nano Lett, vol. 13, no. 5, pp. 1991-5, May 8 2013.
[96] S. Mouri, Y. Miyauchi, and K. Matsuda, "Tunable photoluminescence of monolayer MoS(2) via chemical doping," Nano Lett, vol. 13, no. 12, pp. 5944-8, 2013.
[97] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, "Chloride molecular doping technique on 2D materials: WS2 and MoS2," Nano Lett, vol. 14, no. 11, pp. 6275-80, Nov 12 2014.
[98] B. Cai, S. Zhang, Z. Yan, and H. Zeng, "Noncovalent Molecular Doping of Two-Dimensional Materials," ChemNanoMat, vol. 1, no. 8, pp. 542-557, 2015.
[99] S. Feng, Z. Lin, X. Gan, R. Lv, and M. Terrones, "Doping two-dimensional materials: ultra-sensitive sensors, band gap tuning and ferromagnetic monolayers," Nanoscale Horizons, vol. 2, no. 2, pp. 72-80, 2017.
[100] B. Kang, Y. Kim, J. H. Cho, and C. Lee, "Ambipolar transport based on CVD-synthesized ReSe2," 2D Materials, vol. 4, no. 2, p. 025014, 2017.
[101] S. Nakaharai, M. Yamamoto, K. Ueno, Y.-F. Lin, S.-L. Li, and K. Tsukagoshi, "Electrostatically Reversible Polarity of Ambipolar α-MoTe2 Transistors," ACS Nano, vol. 9, no. 6, pp. 5976-5983, 2015/06/23 2015.
[102] G. Neves, S. F. Cooke, and T. V. Bliss, "Synaptic plasticity, memory and the hippocampus: a neural network approach to causality," Nat Rev Neurosci, vol. 9, no. 1, pp. 65-75, Jan 2008.
[103] T. Euler, P. B. Detwiler, and W. Denk, "Directionally selective calcium signals in dendrites of starburst amacrine cells," Nature, vol. 418, no. 6900, pp. 845-52, Aug 22 2002.
[104] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean, G. S. Rose, and J. S. Plank, "A survey of neuromorphic computing and neural networks in hardware," arXiv preprint arXiv:1705.06963, 2017.
[105] C. H. Ho, Z. Z. Liu, and M. H. Lin, "Direct and indirect light emissions from layered ReS2-x Se x (0 </= x </= 2)," Nanotechnology, vol. 28, no. 23, p. 235203, Jun 9 2017.
[106] C. H. Ho, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Crystal structure and band-edge transitions of ReS2−xSex layered compounds," Journal of Physics and Chemistry of Solids, vol. 60, no. 11, pp. 1797-1804, 1999.
[107] W. Wen, Y. Zhu, X. Liu, H. P. Hsu, Z. Fei, Y. Chen, X. Wang, M. Zhang, K. H. Lin, F. S. Huang, Y. P. Wang, Y. S. Huang, C. H. Ho, P. H. Tan, C. Jin, and L. Xie, "Anisotropic Spectroscopy and Electrical Properties of 2D ReS2(1-x) Se2x Alloys with Distorted 1T Structure," Small, vol. 13, no. 12, Mar 2017.
[108] Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, "Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry," Physical Review B, vol. 92, no. 5, 2015.