研究生: |
童凱雋 |
---|---|
論文名稱: |
二氧化鈦奈米纖維之製備與其在可撓式染料敏化太陽能電池之應用 Synthesis of surface-treated TiO2 nano-fiber and its application on flexible dye-sensitive solar cell |
指導教授: | 戴念華 |
口試委員: |
李紫原
葉孟考 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 二氧化鈦纖維 、染料敏化太陽能電池 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以可撓性材料為基板的染料敏化太陽能電池由於其低成本、應用性廣及具良好的光電轉換效率而受到矚目,但可撓式基板無法應用於高溫製程,而未經過高溫燒結的TiO2電極會因其TiO2顆粒之間連結不佳而導致電子傳輸困難,再加上顆粒狀的結構在承受外加彎曲應力時容易破碎,使得電池整體表現不佳。本實驗以P25 TiO2粉末和氫氧化鈉進行水熱法,製備具有較佳的電子傳輸特性以及可撓韌性的TiO2奈米纖維(TiO2 nano-fiber, TNF)來改善以上問題,並對TiO2纖維進行表面處理,以提升電極染料吸附量,增加電池的光電轉換效率。
本實驗在水熱法製程後,以攪拌酸洗製程取代傳統酸洗製程,較能去除水熱法製程殘留的鈉離子,避免鈉離子對後續燒結製程產生不良影響。合成的TNF直徑約50-200 nm,長度約10-13 μm,以此未經表面處理的TNF作為工作電極組成染料敏化太陽能電池,TNF電極的染料吸附量為24.43 μmol/g,電池的轉換效率為1.08 %;將TNF以濃度為1 M的硝酸處理8小時後,可以提升電極染料吸附量至36.71 μmol/g,轉換效率可增加到1.63 %;結合不同表面處理後,可以進一步將效率提升到1.65 %。在彎曲測試中,當彎曲曲率半徑達到1.02 cm,電池效率仍可維持未彎曲時的98%以上,說明本實驗所製備之TNF電池在彎曲情況下也能正常發揮功能。
[1] J. L. Sawin, S. C. Bhattacharya, E. M. Galàn, A. McCrone, W. R. Moomaw, R. Sims, V. S. O’Brien, F. Sverrisson, “Renewables 2012 global status report”, REN 21, pp. 21-22 (2012).
[2] E. Ahlonsou, Y. Ding, D. Schimel, A. P. M. Baede, “Climate change 2001: the scientific basis”, IPCC 4th Assessment Report, pp. 89-90 (2007).
[3] P. Gevorkian, “Sustainable energy systems engineering: the complete green building design resource”, McGraw-Hill Professional, New York, pp. 498-499 (2007).
[4] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new p-n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, Vol. 25, pp. 676-677 (1954).
[5] KRI Report No. 8: Solar cells, (2005).
[6] B. O’regan, M. Grätzel, “A low-cost, high-efficiency solar based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, pp. 737-739 (1991).
[7] M. Grätzel, “Mesoporous oxide junctions and nanostructured solar cells”, Current Opinion in Colloid & Interface Science, Vol. 4, pp. 314-321 (1999).
[8] S. Ito , T. N. Murakami , P. Comte , P. Liska , C. Grätzel , M. K. Nazeeruddin , M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, Vol. 516, pp. 4613-4619 (2008).
[9] M. Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorganic Chemistry, Vol. 44, pp. 6842 -6851 (2005).
[10] M. K. Nazeeruddin, S. M. Zakeeruddin, J. J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi , K. Schenk , M. Grätzel, “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell”, Coordination Chemistry Reviews, Vol. 248, pp. 1317-1328 (2004).
[11] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C. A. Bignozzi, “Efficient osmium sensitizers containing 2,2’-bipyridine-4,4’-
bisphosphonic acid ligand”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 166, pp. 99-106 (2004).
[12] M. Ryan, “Progress in ruthenium complexes for dye sensitized solar cells”, Platinum Metals Review, Vol. 53, pp. 216-218 (2009).
[13] G. J. Meyer, “Efficient light-to electrical conversion: nanocrystalline TiO2 film modified with inorganic sensitizers”, Journal of Chemical Education, Vol. 74, pp. 652-656 (1997).
[14] J. H. Wu, S. C. Hao, Z. Lan, J. M. Lin, M. L. Huang, Y. F. Huang, L. Q. Fang, S. Yin, T. G. Sato, “A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells”, Advanced Functional Materials, Vol. 17, pp. 2645-2652 (2007).
[15] L. Yang, Z. Zhang, S. Fang, X. Gao, M. Obata, “Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector”, Solar Energy, Vol. 81, pp. 717-722 (2007).
[16] H. Pettersson, T. Gruszecki, “Long term stability of low-power dye-sensitized solar cells prepared by industrial methods”, Solar Energy Materials & Solar cells, Vol. 70, pp. 203-212 (2001).
[17] G. Boschloo, L. Ha1ggman, A. Hagfeldt, “Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells”, The Journal of Physical Chemistry B, Vol. 110. pp. 13144-13150 (2006).
[18] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, “Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability”, The Journal of Physical Chemistry C, Vol. 113, pp. 21779-21783 (2009).
[19] L. Meng, T. Ren, C. Li, “The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC”, Applied Surface Science, Vol. 256, pp. 3672-3682 (2010).
[20] C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited platinum counter electrode”, Electrochimica Acta, Vol. 53, pp. 2890-2896 (2008).
[21] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, Vol. 9, pp. 596-598 (2007).
[22] S. I. Cha, B. K. Koo, S. H. Seo, D. Y. Lee, “Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls”, Journal of Materials Chemistry, Vol. 20, pp. 659-662 (2010).
[23] H. Choi, H. Kim, S. Hwang, Y. Han, M. Jeon, “Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition”, Journal of Materials Chemistry, Vol. 21, pp. 7548-7551 (2011).
[24] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, “Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells”, Electrochemistry Communications, Vol. 10, pp. 1555-1558 (2008).
[25] Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, “Morphology control of mesoporous TiO2 for performance of dye-sensitized solar cells”, Solar Energy Material & Sol Cells, Vol. 83, pp. 1–13 (2004).
[26] J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, “TiO2 nanorods as
additive to TiO2 film for improvement in the performance of dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 180, pp. 184–188 (2006).
[27] Y. J. Kim, M. H. Lee, H. J. Kim, G. Lim, Y. S. Choi, N. G. Park, K. Kim, W. I. Lee “Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres”, Advance Materials, Vol. 21, pp. 3668–3673 (2009).
[28] H. G. Jung, Y. S. Kang, Y. K. Sun, “Anatase TiO2 spheres with high surface area and mesoporous structure via a hydrothermal process for dye-sensitized solar cells”, Electrochimica Acta, Vol. 55, pp. 4637-4641 (2010).
[29] S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency”, Advanced Materials, Vol. 20, pp. 54–58 (2008).
[30] X. Feng, K. Zhu, A. J. Frank, C. A. Grimes, T. E. Mallouk, “Rapid charge transport in dye-sensitized solar cells made from vertically aligned single-crystal rutile TiO2 nanowires”, Angewandte Chemie, Vol. 124, pp. 2781-2784 (2012).
[31] I. C. Flores , J. N. Freitas, C. Longo, M. A. Paoli, H. Winnischofer , A. F. Nogueira, “Dye-sensitized solar cells based on TiO2 nanotubes and a solid-state electrolyte”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 187, pp. 153-160 (2007).
[32] J. Y. Liao, B. X. Lei, H. Y. Chen, D. B. Kuang, C. Y. Su, “Oriented hierarchical single crystalline anatase TiO2 nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells”, Energy & Environmental Science, Vol. 5, pp. 5750-5757 (2012).
[33] Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, Jing Xu, H. Han, D. Chen, G. Shen, “Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts”, ACS Nano, Vol. 5, pp. 8412-8419 (2011).
[34] X. Zhang, T. Zhang, J. Ng, D. D. Sun, “High-performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment”, Advanced Functional Materials, Vol. 19, pp. 3731–3736 (2009).
[35] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang, L. D. Zhang, ” Hydrothermal synthesis and photoluminescence of TiO2 nanowires”, Chemical Physics Letters, Vol. 365, pp. 300-304 (2002).
[36] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Titania nanotubes prepared by chemical processing”, Advanced Materials, Vol. 11, pp. 1307-1311 (1999).
[37] P. K. Singh, K. W. Kim, N. G. Park, H. W. Rhee, “Mesoporous nanocrystalline TiO2 electrode with ionic liquid-based solid polymer electrolyte for dye-sensitized solar cell application”, Synthetic Metals, Vol. 158, pp. 509-593 (2008).
[38] P. Sawunyama, A. Yasumori, K. Okada, “The nature of multilayered TiO2-based photocatalytic films prepared by a sol-gel process”, Materials Research Bulletin, Vol. 33, pp. 795-801 (1998).
[39] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of titanium oxide nanotube”, Langmuir, Vol. 14, pp. 3160-3163 (1998).
[40] L. Meng, A. Ma, P. Ying, Z. Feng, C. Li, “Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells”, Journal of Nanoscience and Nanotechnology, Vol.11, pp. 929–934 (2011).
[41] H. W. Chen, C. Y. Hsu, J. G. Chen, K. M. Lee, C. C. Wang, K. C. Huang, K. C. Ho, “Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods”, Journal of Power Sources, Vol. 195, pp. 6225-6231 (2010).
[42] P. J. Cameron, L. M. Peter, “Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, The Journal of Physical Chemistry B, Vol. 107, pp. 14394-14400 (2003).
[43] H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, “Nano-embossed hollow spherical as bifunctional material for high-efficiency dye-sensitized solar cells”, Advanced Materials, Vol. 20, pp. 195-199 (2008).
[44] P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, J. A. M. Roosmalen, “Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells”, The Journal of Physical Chemistry B, Vol. 110, pp. 19191-19197 (2006).
[45] L. Han, N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Applied Physics Letters, Vol. 84, pp. 2433-2435 (2004).
[46] V. Yong, S. T. Ho, R. P. H. Chang, “Modeling and simulation for dye-sensitized solar cells”, Applied Physics Letters, Vol. 92, pp. 143506 (2008).
[47] X. Zhang, J. H. Pan, A. J. Du, W. Fu, D. D. Sun, J. O. Leckie, “Combination of one-dimensional TiO2 nanowire photocatalytic oxidation with microfiltration for water treatment”, Water Research, Vol. 43, pp. 1179–1186 (2009).
[48] A. R. Armstrong, G. Armstrong, J. Canales, P. G. Bruce, “TiO2-B nanowires”, Angewandte Chemie International Edition, Vol. 43, pp. 2286-2288 (2004).
[49] 劉曉萍, “簡易合成氮氧化鈦的自支撐薄膜應用於超級電容器上”, 國立清華大學材料科學與工程學系 (2012).
[50] Z. S. Wang, T. Yamaguchi, H. Sugihara, H. Arakawa, “Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films”, Langmuir, Vol. 21, pp. 4272-4276 (2005)
[51] K. H. Park, E. M. Kim, H. B. Gu, “Electrochemical properties of HNO3 pre-treated TiO2 photoanode based dye-sensitized solar cell”, Journal of Advanced Engineering and Technology, Vol. 1, pp. 405-408 (2008).