研究生: |
張嘉原 Zhang, Jia-Yuan |
---|---|
論文名稱: |
銦/矽蕭特基紅外光感測器之研究 The Study of Indium-Silicon Schottky Junction Infrared Sensor |
指導教授: |
徐永珍
Hsu, Klaus Yung-Jane |
口試委員: |
江雨龍
Jiang, Yeu-Long 江雨龍 Jiang, Yeu-Long |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 紅外光感測器 、蕭特基 、銦/矽 |
外文關鍵詞: | Infrared Sensor, Schottky, Indium-Silicon |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在探討銦/矽蕭特基光二極體在室溫下的運作,此接面可做為一紅外光感測器。選用銦金屬做為接面材料之一,主要利用它與矽產生的蕭特基能障很小,可用來偵測長波長的紅外光。由於在室溫下,元件產生出的暗電流較大,難以將光電流區別開來,因此我們將元件操作在零偏壓下,以降低暗電流。我們並將元件外接一轉阻放大電路,藉由此放大電路將光電流訊號轉為電壓訊號,便於觀測。為了使元件的雜訊降低,在量測時,藉由量測儀器內部的低通濾波功能,將熱雜訊以平均的方式消除。論文中亦探討此蕭特基接面的電性、元件照光下光電性質、以及經由放大電路後訊號的比較。
This thesis studies the feasibility of using an indium-silicon Schottky junction as an infrared photodetector at room temperature. The Schottky barrier between silicon and indium is suitable for infrared detection. It is difficult to separate dark current and photocurrent at room temperature. Therefore, the device is operated at zero bias to reduce dark current. Furthermore, a transimpedance amplifier circuit is connected to the device for turning the current signal to voltage signal.
The built-in low-pass filter in the device analyzer is applied during the measurement to suppress noise signal. The thermal noise can be eliminated by averaging. The electrical properties of Schottky junction, the optoelectronic characteristics, and the comparisons of amplified signal are included in this thesis.
[1] A. Rogalski, “Infrared detectors: An overview,” Infr. Phys. Technol., vol. 43, nos. 3–5, pp. 187–210, Jun. 2002.
[2] D. J. Hall, L. Buckle, N. T. Gordon, et al., “High-performance longwavelength HgCdTe infrared detectors grown on silicon substrates,” Appl. Phys. Lett., vol. 85, no. 11, pp. 1791740-1–1791740-3, Jul. 2004.
[3] Y. An, A. Behnam, E. Pop, et al., “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett., vol. 102, no. 1, pp. 013110-1–013110-5, Jan. 2013.
[4] C.K. Chunga,U, J. Hwangb, T.H. Jawa, D.S. Wuua, "Electrical properties of Ir-silicide formation on p-Si(100) in ultra-high vacuum", Thin Solid Films 373 (2000) 68-72
[5] Peng Lv, Xiujuan Zhang, Xiwei Zhang, Wei Deng, and Jiansheng Jie,"High-Sensitivity and Fast-Response Graphene/Crystalline Silicon Schottky Junction-Based Near-IR Photodetectors", IEEE electron device letters, VOL. 34, NO. 10, October 2013
[6] Changjian Zhou, Salahuddin Raju, Bin Li, Mansun Chan, Yang Chai, and Cary Y. Yang, "Self-Driven Metal-Semiconductor-Metal WSe2 Photodetector with Asymmetric Contact Geometries", Advanced Functional Materials, September 2018
[7] R. L. Petritz, "Theory of Photoconductivity in Semiconductor Films," Physical Review,vol.104,no.6,pp.1508-1516,12/15/1956, doi:
10.1103/PhysRev.104.1508.
[8] Maurizio Casalino, "Internal Photoemission Theory: Comments and Theoretical Limitations on the Performance of Near-Infrared Silicon Schottky Photodetectors", IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 52, NO. 4, APRIL 2016
[9] S. M. Sze, "Semiconductor devices: physics and technology. John wiley & sons, 2008.
[10] Irina Stateikina, "Optoelectronic Semiconductor Devices Principals and Characteristics", January 2002
[11] Keithley, ”Model 6487 Picoammeter/Voltage Source Reference Manual”, 6487-901-01 Rev. B/ March 2011