簡易檢索 / 詳目顯示

研究生: 張毓紋
Chang, Yu-Wen
論文名稱: 雙光子微影系統之光阻與製程研究─建立適用光阻性能表
Research on Photoresist and Manufacturing Process of Two-Photon Lithography System: Building the Optimum Photoresist Performance Table
指導教授: 傅建中
Fu, Chien-Chung
口試委員: 李三良
Lee, San-Liang
項維巍
Hsiang, Wei-Wei
張德宜
Chang, Te-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2022
畢業學年度: 109
語文別: 中文
論文頁數: 102
中文關鍵詞: 雙光子聚合負光阻材料環氧樹脂型光阻有機-非有機混合型光阻丙烯酸酯型光阻雷射直寫
外文關鍵詞: negative photoresist, SQ50, OrmoComp, mixed resin, epoxy-based photoresist, acrylate-based photoresist, inorganic-organic hybrid photoresist
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以雙光子微影系統針對五種雙光子材料進行材料性質分析,包含特徵尺寸、劑量累積效應、機械強度與收縮率等四種性質,再比較不同種光阻於結構成品的表現和優缺點,並建立一份光阻性能資料表。對於雙光子技術的加工製造階段來說,光阻的參數資料深具必要性,它同時也是使雙光子技術能廣泛應用不可或缺的關鍵。其中材料性質跟結構成品表現的相關性是一個值得探討的問題。然而以往文獻偏向以某種光阻或某種性質作為目標來探討,因此較缺乏不同種光阻之間性質比較的研究,也很少有為光阻製程參數做系統性的歸納、整理之研究。因此本研究鑑於這方面的文獻不足,將不同光阻性質之比較與製程參數的系統性整理作為研究目標。
    本研究進行的實驗包含特徵尺寸量測、劑量累積效應量測、機械強度量測與收縮率量測。將實驗數據統整分析過後,歸納出不同光阻的性質,以及成品表現和優缺點。之後利用數據資料來建立適用光阻性能表,並以特定三維複雜結構來驗證光阻性能表之可行性。考量到使用者的方便性,最後再將光阻性能表以軟體介面的方式呈現,並且與現有的雙光子電腦輔助與製造軟體系統結合。
    透過本研究之成果,預期能建立出一份雙光子製造技術之加工設計的對照參數。未來使用者在進行結構設計與製程規劃時,即可根據目標規格,對應光阻性能表快速篩選出適用光阻,省去大量前置測試的時間與心力,並能提升結構成品之成功率。


    Two-photon polymerization (TPP) lithography is a powerful tool in micro-/nano-manufacturing field for its high resolution and its ability to fabricate arbitrary 3D structures. The materials, the photoresists, are important factors of good quality of structures, and many studies have been done to figure out the relationship between the photoresists and the completed structures. However, there still lacks performance comparison data among different photoresists, which is essential and served as the parameter in TPP processes. Therefore, this study focuses on five different photoresists to investigate their properties, including feature sizes, accumulation effect, mechanical strength, and shrinkage ratio, and then verifies their final performances with some specific structures. Thus, a photoresist performance table will be established and shown in the form of graphical user interface to combine with the existing TPP CAD/CAM system. Through this study, the users can quickly find manufacturing parameters of the desired structures according to the photoresist performance table. Therefore, time and cost can be saved, and the success rate of complicated structures will be improved as well.

    摘要----------------------------i Abstract-----------------------ii 致謝--------------------------iii 目錄---------------------------iv 表目錄-----------------------viii 圖目錄--------------------------x 第一章 緒論--------------------1 1.1 研究背景--------------------1 1.2 文獻回顧--------------------3 1.3 研究動機與目的--------------8 1.4 論文架構--------------------9 第二章 原理-------------------10 2.1 雙光子聚合技術-------------10 2.1.1 雙光子吸收---------------10 2.1.2 光致聚合-----------------11 2.1.3 雷射光束與體素-----------12 2.2 雙光子光阻材料-------------15 2.2.1 負光阻-------------------15 2.2.2 正光阻-------------------16 第三章 研究方法---------------17 3.1 雙光子微影系統-------------17 3.1.1 壓電式微影系統架構-------17 3.1.2 加工流程-----------------19 3.2 製程步驟及設備介紹---------21 3.2.1 光阻材料-----------------21 3.2.2 試片製備流程-------------22 3.2.3 儀器設備介紹-------------23 3.3 實驗規劃-------------------25 3.3.1 光阻性質實驗介紹---------25 3.3.2 分析與結構驗證實驗-------29 3.3.3 性能表GUI----------------31 第四章 結果與討論-------------32 4.1 光阻選用-------------------32 4.1.1 測試光阻可用性-----------32 4.1.2 光譜分析-----------------32 4.1.3 加工問題-----------------35 4.2 實驗結構設計與測試---------37 4.2.1 懸臂橋結構---------------37 4.2.2 微懸臂樑結構-------------37 4.2.3 立方體結構---------------38 4.3 特徵尺寸量測結果-----------39 4.3.1 SU8----------------------39 4.3.2 SQ50---------------------41 4.3.3 OrmoComp-----------------43 4.3.4 Mixed resin--------------45 4.3.5 PEGDA--------------------47 4.3.6 小結---------------------50 4.4 劑量累積效應量測結果-------52 4.4.1 SU8----------------------52 4.4.2 SQ50---------------------55 4.4.3 OrmoComp-----------------58 4.4.4 Mixed resin--------------61 4.4.5 PEGDA--------------------64 4.4.6 小結---------------------68 4.5 收縮率量測結果-------------70 4.5.1 SU8----------------------70 4.5.2 SQ50---------------------71 4.5.3 OrmoComp-----------------72 4.5.4 Mixed resin--------------73 4.5.5 PEGDA--------------------74 4.5.6 小結---------------------75 4.6 機械強度量測結果-----------76 4.6.1 SU8----------------------76 4.6.2 SQ-----------------------77 4.6.3 Mixed Resin--------------78 4.6.4 小結---------------------80 4.7 結構驗證實驗---------------81 4.7.1 驗證實驗結果-------------81 4.7.2 GUI介面------------------89 4.7.3 小結---------------------90 4.8 研究限制與問題討論---------91 4.8.1 量測誤差-----------------91 4.8.2 過曝問題-----------------91 第五章 結論-------------------92 5.1 結論-----------------------92 5.2 未來展望-------------------93 參考文獻-----------------------94 附錄---------------------------97

    1. Wang, X., et al., Biomaterial-based microstructures fabricated by two-photon polymerization microfabrication technology. RSC advances, 2019. 9(59): p. 34472-34480.
    2. Steenhusen, S., et al. Multi-photon polymerization of inorganic-organic hybrid polymers using visible or IR ultrafast laser pulses for optical or optoelectronic devices. in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics III. 2010. International Society for Optics and Photonics.
    3. Marder, S.R., J.-L. Brédas, and J.W. Perry, Materials for multiphoton 3D microfabrication. Mrs Bulletin, 2007. 32(7): p. 561-565.
    4. Maruo, S. and H. Inoue, Optically driven micropump produced by three-dimensional two-photon microfabrication. Applied Physics Letters, 2006. 89(14): p. 144101.
    5. Serbin, J., et al., Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Optics letters, 2003. 28(5): p. 301-303.
    6. Ovsianikov, A., et al. Two-photon polymerization for fabrication of biomedical devices. in Microfluidics, BioMEMS, and Medical Microsystems V. 2007. International Society for Optics and Photonics.
    7. Kumi, G., et al., High-speed multiphoton absorption polymerization: fabrication of microfluidic channels with arbitrary cross-sections and high aspect ratios. Lab on a Chip, 2010. 10(8): p. 1057-1060.
    8. Claeyssens, F., et al., Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir, 2009. 25(5): p. 3219-3223.
    9. Koroleva, A., et al., Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication, 2012. 4(2): p. 025005.
    10. Grossman, N., et al., Investigation of optical properties of circular spiral photonic crystals. Optics express, 2007. 15(20): p. 13236-13243.
    11. Tétreault, N., et al., New route to three‐dimensional photonic bandgap materials: silicon double inversion of polymer templates. Advanced Materials, 2006. 18(4): p. 457-460.
    12. Sun, H.-B., et al., Shape precompensation in two-photon laser nanowriting of photonic lattices. Applied physics letters, 2004. 85(17): p. 3708-3710.
    13. Tsutsumi, N., et al., Fabrication of three-dimensional microstructures in positive photoresist through two-photon direct laser writing. Applied Physics A, 2017. 123(8): p. 553.
    14. Ostendorf, A. and B.N. Chichkov, Two-photon polymerization: a new approach to micromachining. Photonics spectra, 2006. 40(10): p. 72.
    15. Maruo, S., K. Ikuta, and H. Korogi, Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography. Journal of Microelectromechanical Systems, 2003. 12(5): p. 533-539.
    16. Baldacchini, T., et al., Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization. Journal of Applied Physics, 2004. 95(11): p. 6072-6076.
    17. Cônsoli, P.M., et al., Feature size reduction in two‐photon polymerization by optimizing resin composition. Journal of Polymer Science Part B: Polymer Physics, 2018. 56(16): p. 1158-1163.
    18. Jiang, L., et al., Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization. Optics express, 2016. 24(12): p. 13687-13701.
    19. Cicha, K., et al., Young’s modulus measurement of two-photon polymerized micro-cantilevers by using nanoindentation equipment. Journal of Applied Physics, 2012. 112(9): p. 094906.
    20. Lemma, E.D., et al., Mechanical properties tunability of three-dimensional polymeric structures in two-photon lithography. IEEE transactions on nanotechnology, 2016. 16(1): p. 23-31.
    21. Tsutsumi, N., et al., Influence of baking conditions on 3D microstructures by direct laser writing in negative photoresist SU-8 via two-photon polymerization. Journal of Laser Applications, 2017. 29(4): p. 042010.
    22. Ovsianikov, A. and B.N. Chichkov, Two-Photon Polymerization–High Resolution 3D Laser Technology and Its Applications, in Nanoelectronics and Photonics. 2008, Springer. p. 427-446.
    23. Göppert-Mayer, M., Elementary actions with two quantum leaps. Ann. Physik, 1931. 9: p. 273.
    24. Kaiser, W. and C. Garrett, Two-photon excitation in Ca F 2: Eu 2+. Physical review letters, 1961. 7(6): p. 229.
    25. Stampfl, J., R. Liska, and A. Ovsianikov, Multiphoton lithography: Techniques, materials, and applications. 2016: John Wiley & Sons.
    26. Nesvadba, P., Radical polymerization in industry. Encyclopedia of radicals in chemistry, biology and materials, 2012.
    27. Maruo, S., O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Optics letters, 1997. 22(2): p. 132-134.
    28. van der Velden, G., D. Fan, and U. Staufer, Fabrication of a microfluidic device by using two-photon lithography on a positive photoresist. Micro and Nano Engineering, 2020: p. 100054.
    29. Malik, M.S., et al., Review on UV-Induced Cationic Frontal Polymerization of Epoxy Monomers. Polymers, 2020. 12(9): p. 2146.
    30. Seet, K.K., et al., Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8. Applied physics letters, 2006. 89(2): p. 024106.
    31. Haas, K.-H. and H. Wolter, Synthesis, properties and applications of inorganic–organic copolymers (ORMOCER® s). Current Opinion in Solid State and Materials Science, 1999. 4(6): p. 571-580.
    32. Ovsianikov, A., et al., Two‐photon polymerization technique for microfabrication of CAD‐designed 3D scaffolds from commercially available photosensitive materials. Journal of tissue engineering and regenerative medicine, 2007. 1(6): p. 443-449.
    33. Kaehr, B., et al., Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser. Analytical chemistry, 2006. 78(9): p. 3198-3202.
    34. Aumann, A., et al., Resolution and aspect ratio in two-photon lithography of positive photoresist. Journal of Laser Applications, 2014. 26(2): p. 022002.
    35. Cao, H.-Z., et al., Two-photon nanolithography of positive photoresist thin film with ultrafast laser direct writing. Applied Physics Letters, 2013. 102(20): p. 201108.
    36. Wu, J.-R., Research on Planning Optimized Subregional Scanning Path in 3D Lithography: Speeding up the Fabrication of High-Precision Micro Compound Lens. NTHU, Master Thesis, 2020.
    37. Yeh, C.W., Automatic Large Area Fabrication for Nano 3D Lithography. Master Thesis, 2017.
    38. Che-Hung, Y., Research and Development of Two Photons Polymerization Scanning System. NTHU, Master Thesis, 2020.
    39. Chen, C.H., Research and Development of Two-Photon Polymerization 3D Nano/Micro-Machining System. NTHU, Master Thesis, 2015.
    40. Hua-Yi, N., Fabrication of Micro Optical Elements Array by Nano 3D Lithography System. NTHU, Master Thesis, 2019.
    41. Wan-Ping, Y., The Cell Scaffold Fabricated by Nano 3D Lithography. NTHU, Master Thesis, 2017.
    42. Barron, A.R., Physical Methods in Chemistry and Nano Science. 2012: Rice University.
    43. Maruo, S., T. Hasegawa, and N. Yoshimura, Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures. Optics express, 2009. 17(23): p. 20945-20951.
    44. Yu, C.-W., Optimization of Processing Parameters for Nano 3D Lithography. NTHU, Master Thesis, 2017.

    QR CODE