研究生: |
錡瀚翔 Chi, Han-Hsiang |
---|---|
論文名稱: |
燈籠型三鎳金屬錯合物的合成和反三明治釩錯合物 促進的腈類環化反應 Synthesis of Lantern-type Trinuclear Nickel Complexes and Trimerization of Nitriles Mediated by the Inverted-Sandwich Vandium Complex |
指導教授: |
蔡易州
Tsai, Yi-Chou |
口試委員: |
劉學儒
Liu, Hsueh-Ju 莊士卿 Chuang, Shih-Ching |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 低配位四金屬錯合物的合成 、雙鋁金屬錯合物的合成 、三鎳金屬錯合物的合成 、苯甲腈的環化 、2-甲基-苯甲腈的偶合反應 |
外文關鍵詞: | Low coordinated tetranuclear complex synthesis, dialuminum complexes synthesis, trinickel complexes synthesis, cyclization of benzonitriles, metathesis of 2-methyl-benzonitriles |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們嘗試以具剛性結構的四氮配位基 2,7-二(2,4,6-三甲基苯胺)-1,8-萘啶(H2(N2N2)Mes)在溫和條件合成出低配位多金屬錯合物。以四氮配位基H2(N2N2)Mes與三甲基鋁和二乙基氯化鋁反應後,可以合成出雙金屬錯合物{AlMe[μ-κ4-(N2N2)Mes]}2 (2)、錯合物{AlCl[μ-κ4-(N2N2)Mes]}2 (3)和{AlEt[μ-κ4-(N2N2)Mes]}2 (4)。另外,我們也成功以低價鎳金屬雙-(1,5-環辛二烯)鎳(0)與配位基H2(N2N2)Mes直接加熱合成出三鎳燈籠形金屬錯合物Ni3[μ3-κ3-(N2N2)Mes]3 (5),並藉由還原單核錯合物NiI2(THF)2[κ2-(N2N2)Mes] (8)成功找到第二種錯合物5的合成法。藉由兩當量鉀石墨還原錯合物5可得單鎳錯合物Ni[κ2-(N2N2)Mes]3 (6)。我們也以2當量雙-(1,5-環辛二烯)鎳(0)與配位基H2(N2N2)Mes反應,而分離出不同氧化態之三鎳燈籠型錯合物Ni3[μ3-κ3-(N2N2)Mes]2[μ-κ2-(N2N2)Mes] (7)。
第二部份,本篇論文發現反三明治釩錯合物(μ-η6:η6-C7H8)[V(Nacnac)]2 (Nacnac = HC(C(Me)NC6H3-iPr2)2) (9)具有環化苯甲腈的能力。並藉由設計實驗和單離反應中間物來推測苯甲腈環化機構,並單離出反應中間物,其為錯合物[κ2-(NC(Ph)C(Ph)NC(Ph)N)]V(Nacnac) (10)。錯合物9與2-甲基-苯甲腈反應可得到錯合物[(o-tolyl)CN]2[κ2-Ht]V(Nacnac) (12) (Ht= (3-(o-tolyl))isoquinolin-1-amine ), 發現其結構為偶合產物,故以錯合物9與4-氯-2-甲基-苯甲腈反應可得錯合物[κ2-ClHt][ClHt]V(Nacnac) (13) (ClHt= 6-chloro-3-(4-chloro-2-methylphenyl)isoquinolin-1-amine),進一步確認其為自由基反應。
The first part of this thesis aim for the synthesis of the Low-valent, low-coordinate tetranuclear metal complexes (M = Al, Ni) by the use of tetradentate multinitrogen ligand (2,7-bis(2,4,6-trimethylanilinyl)-1,8-naphthyridine (H2(N2N2)Mes) (Mes = 2,4, 6-Me3C6H2) under mild conditions. We intended to work with free ligand as such. Treatment of H2(N2N2)Mes with AlMe3 and AlEt2Cl produced dinuclear {AlMe[μ-κ4-(N2N2)Mes]}2 (1), {AlCl[μ-κ4-(N2N2)Mes]}2 (3)and{AlEt[μ-κ4-(N2N2)Mes]}2 (4)respectively. Interestingly, reaction of H2(N2N2)Mes with 1.5 equivalents Ni(COD)2, led to the isolation of trinickel lantern-type complex, Ni3[μ3-κ3-(N2N2)Mes]3 (5). Alternatively, 5 can be prepared by the reduction of NiI2(THF)2[κ2-(N2N2)Mes] with 2 equiv. KC8. Complex 5 further reduced with 2 equivalents KC8 to give mono nuclear Ni[κ2-(N2N2)Mes]3 (6). Moreover, a mix-valent trinickel complex Ni3[μ3-κ3-(N2N2)Mes]2[μ-κ2-(N2N2)Mes] (7) was prepared by the reaction of H2(N2N2)Mes with 2.1 equivalents Ni(COD)2.
The second part of this thesis highlights trimerization of nitriles by using inverted sandwich vanadium complex. 2,4,6-triphenyltriazine was prepared from PhCN by using (μ-η6:η6-C7H8)[V(Nacnac)]2 (Nacnac = HC(C(Me)NC6H3-iPr2)2) (9) as a catalyst. While investigating the formation mechanism of these triazines, [κ2-(NC(Ph)C(Ph)NC(Ph)N)]V(Nacnac) (10) was isolated from the reaction of 9 with PhCN. Furthermore, reaction of 9 with o-tolunenenitrile, 4-chloro-2-methylbenzonitrile in hexane produced [(o-tolyl)CN]2[κ2-Ht]V(Nacnac) (12) (Ht= (3-(o-tolyl))isoquinolin-1-amine ) and [κ2-ClHt][ClHt]V(Nacnac) (13) (ClHt= 6-chloro-3-(4-chloro-2-methylphenyl)isoquinolin-1-amine.
(1) Kauffman, G. B. Coord. Chem. Rev. 1973, 11, 161-188.
(2) Kauffman, G. B. Coord. Chem. Rev. 1972, 11, 339-363.
(3) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science. 1964, 145, 1305-1306.
(4) Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921-922.
(5) Dedieu, A.; Albright, I. T. A.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3141-3151.
(6) Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science. 2005, 310, 844-847.
(7) Ni, C.; Ellis, B. D.; Longb, G. J.; Power, P. P. Chem. Commun. 2009, 2332–2334.
(8) Tsai, Y.-C.; Hsu, C.-W.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. Angew. Chem. Int. Ed. 2008, 47, 7250 –7253.
(9) Hsu, C.-W.; Yu, J.-S. K.; Yen, C.-H.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2008, 47, 9933 –9936.
(10) Tsai, Y.-C.; Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. J. Am. Chem. Soc. 2009, 131, 12534–12535.
(11) Liu, S.-C.; Ke, W.-L.; Yu, J.-S. K.; Kuo, T.-S.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2012, 51, 6394 –6397.
(12) Huang, Y.-L.; Lu, D.-Y.; Yu, H.-C.; Yu, J.-S. K.; Hsu, C.-H.; Kuo, T.-S.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2012, 51, 7781 –7785.
(13) Lu, D.-Y.; Kuo, T.-S.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2016, 55, 11614 –11618.
(14) Nair, A.K.; Harisomayajula, N. V. S.; Tsai, Y.-C. Inorg. Chim. Acta. 2015, 424, 51–62.
(15) 吳佩芳,國立清華大學碩士論文, 2010.
(16) 劉士誠, 國立清華大學碩士論文, 2010.
(17) Yang, E.-C.; Cheng, M.-C.; Tsai, M.-S.; Peng, S.-M. J. Chem. Soc. Chem. Commun. 1994, 2377-2378.
(18) Cotton, F. A.; Daniels, L. M.; Jordan, IV, G. T.; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 10377-10381.
(19) Cle´rac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Kirschbaum, K.; Murillo, C. A.; Pinkerton, A. A.; Schultz, A. J.; Wang, X. J. Am. Chem. Soc. 2000, 122, 6226-6236.
(20) MacDiarmid, A. G. The Nobel Foundation, 2000, 73, 701-712.
(21) Little, L. A. Phys. Rev. A, 1964, 134, 1416-1424.
(22) Jang, S.-Y.; Jeng, C.; Chian, C.-S., Tzuo, J.-L.Chinese. J. Inorg. Chem. 2011, 27, 1451-1464.
(23) Chen, Y.-H.; Lee, C.-C.; Wang, C.-C.; Lee, G.-H.; Lai, S.-Y.; Li, F.-Y.; Mou, C.-Y.; Peng S.-M. Chem. Commun. 1999, 1667–1668.
(24) Ismayilov, R. H.; Wang, W.-Z.; Lee, G.-H.; Yeh, C.-Y.; Hua, S.-A.; Song, Y.; Rohmer, M.-M.; Bénard, M.; Peng, S.-H. Angew. Chem. Int. Ed. 2011, 50, 2045 –2048.
(25) Ismayilov, R. H.; Wang,W.-Z.; Lee, G.-H.; Chien, C.-H.; Jiang, C.-H.; Chiu, C.-L.; Yeh, C.-Y.; Peng, S.-M. Eur. J. Inorg. Chem. 2009, 2110–2120.
(26) Hua, S.-A.; Liu, I. P.- C.; Hasanov, H.; Huang, G.-C.; Ismayilov, R. H.; Chiu, C.- L.; Yeh, C.-Y.; Leea G.- H.; Peng, S.-M. Dalton Trans. 2010, 39, 3890–3896.
(27) Yeh, C.-Y.; Chou, C.-H.; Pan, K.-C.; Wang, C.-C.; Lee, G.- H.; Su, Y. O.; Peng, S.-M. J. Chem. Soc. Dalton Trans. 2002, 2670–2677.
(28) Duff, A. W.; Jonas, K. J. Am. Chem. Soc. 1983, 105, 5479-5480
(29) Tsai, Y.-C. ; Wang, P.-Y. ; Chen, S.-A.; Chen, J.-M. J. Am. Chem.Soc. 2007, 129, 8066.
(30) Diaconescu, P. L.; Arnold, P. L.; Baker, T. A. ; Mindiola D. J.; Cummins, C.C. J. Am. Chem. Soc. 2000, 122, 6108.
(31) Archer, A. M.; Bouwkamp, M. W.; Cortez, M.-P.; Lobkovsky E.; Chirik, P. J. Organometallics. 2006, 25, 4269.
(32) Yeh, M. P.; Hwu, C.; Lee, A.; Tsai, M. Organometallics, 2001, 20, 4965.
(33) Dai, X.; Kapoor, P.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 4798.
(34) Smith, J. M.; Sadique, A. R.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachicotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. J. Am. Chem. Soc. 2006, 128, 756.
(35) Bart, S. C.; Hawrelak, E. J.; Lobkovsky E.; Chirik, P. J. Organometallics, 2005, 24, 5518.
(36) 王柏楊, 國立清華大學碩士論文, 2007.
(37) 呂家福, 國立清華大學碩士論文, 2008.
(38) 游憲政, 國立清華大學碩士論文, 2012.
(39) Campbell, J. A. J. Chem. Educ. 1985, 62, 231.
(40) Al-Wassil, A.-A.; Hitchcock, P. B.; Sarisaban, S.; Smith, J. D.; WilsonMatson, C. L. J. Chem. Soc. Dalton Trans. 1985, 1929-1933.
(41) Schaub, T.; Radius, U. Z. Anorg. Allg. Chem. 2006, 632, 807-813.
(42) 張凱傑, 國立清華大學化學研究所碩士論文, 2009.
(43) Klusik, H.; Berndt, A. Angew. Chem. Inf. Ed. Engl. 1981, 20, 870-871.
(44) Robinson, G. H. Advances In Organometaliic Chemistry. 2001.
(45) Ghiasi, R.; Heidarbeigi, A. Russ. J. Inorg. Chem. 2016, 61, 985-992.
(46) Pyykko, P. Phys. Rev. B. 2012, 85, 024115.
(47) Rumyantsev, M.; Sitnikov, N. S.; Somov, N. V. J. Phys. Chem. A. 2015, 119, 4108−4117.
(48) Cummins, C. C. Prog. Inorg. Chem. Rev. 2004, 104, 385.
(49) Schaub, T.; Radius, U. Z. Anorg. Allg. Chem. 2006, 632, 807-813.
(50) Jones, C.; Schulten, C.; Fohlmeister, L.; Stasch, A.; Murray, K. S.; Moubaraki, B.; Kohl, S.; Ertem, M. Z.; Gagliardi, L.; Cramer, C. J. Chem. Eur. J. 2011, 17, 1294 – 1303.
(51) Steiman, T. J.; Uyeda, C. J. Am. Chem. Soc. 2015, 137, 6104−6110.
(52) Pal, S.; Uyeda, C. J. Am. Chem. Soc. 2015, 137, 8042−8045.
(53) Cotton, F. A.; Daniels, L. M.; Lei, P.; Murillo, C. A.; Wang, X. Inorg. Chem. 2001, 40, 2778-2784.
(54) Cle´rac, R.; Cotton, F. A., Dunbar, K. R.; Murillo, C. A.;Pascual, I.; Wang, X. Inorg. Chem. 1999, 38, 2655-2657.
(55) 廖敬維, 國立清華大學化學研究所碩士論文, 2013.
(56) 江麒光, 國立清華大學碩士論文, 2016.
(57) 林亨菕, 國立清華大學化學研究所碩士論文, 2011.
(58) Cotton, F. A.; Matusz, M.; Poli, R.; Feng, X. J. Am. Chem. Soc. 1988, 110, 1144-1154.
(59) Bercaw, J. E.; Davies, D. L.; Wolczansk, P. T. Organometallics. 1986, 5, 443-450.
(60) Peng, C.-W.; Wang, C.-C.; Lee, H.- C.; Lo, W.-C.; Lee, G.- H.; Peng, S.-M. J. Chin. Chem. Soc. 2001, 48, 987-996.
(61) Berry, J. F.; Cotton, F. A.; Lu, T.; Murillo, C. A.; Wang, X. Inorg. Chem. 2003, 42 , 3595-3601.
(62) Hsu, L.-C. New industrial polymers, 1974.
(63) Becker, L.; Arndt, p.; Spannenberg, A.; Rosenthal, U. Chem. Eur. J. 2014, 20, 12595 – 12600.
(64) Tsai,Y.-C.; Wang, P.-Y.; Lin, K.- M.; Chenb, S.-A.; Chenb, J.-M. Chem. Commun. 2008, 205–207.
(65) 謝昌呈, 國立清華大學碩士論文, 2013.
(66) Gambarotta, S. J. Organomet. Chem. 1984, 270, 49-52.
(67) Milsmann, C.; Turner, A. R.; Semproni, S. P.; Chirik, P. J. Angew. Chem. Int. Ed. 2012, 51, 5386 –5390.
(68) Lentz, M. R.; Vilardo, J. S.; Lockwood, M. A.; Fanwick, P. E.; Rothwell, I.P. Organometallics. 2004, 23, 329-343.
(69) Fenga, J. B.; Wu, X.-F. Adv. Synth. Catal. 2016, 358, 2179 – 2185.
(70) DiVincenzo, D. P.; Rabii, S. Phys. Rev. B 1982, 25, 4110.
(71) Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chenb, S.-A.; Chenb, J.-M. Chem. Commun. 2008, 205, 205–207.
(72) Alexandra, E. M.; Boelrijk, T. X. Neenan.; Reedijk, J. J. Chem. Soc., Dalton Trans. 1997, 4561–4570.